GaAs FET Ultrabroad-Band Amplifiers for Gbit/s Data Rate Systems

KAZUHIKO HONJO AND YOICHIRO TAKAYAMA

Abstract—A novel ultrabroad-band amplifier configuration suitable for GaAs FET's has been developed. The developed amplifier circuit operates as a capacitor–resistor (C–R) coupled amplifier circuit in the low-frequency range in which $|S_{21}|$ for the GaAs FET's is constant. It also operates as a lossless impedance matching circuit in the microwave frequency range in which $|S_{21}|$ for the GaAs FET has a slope of approximately -6 dB/octave. Using this configuration technique, 800-kHz to 9.5-GHz band (13.5 octaves), 8.6-dB gain GaAs FET amplifier modules have been realized. The amplifier module has 40-ps step response rise time. It also has low input and output VSWR. By cascading two-amplifier modules, 19-dB gain over the 800-kHz to 8.5-GHz range and 50-ps step response rise time were obtained. NF is lower than 8 dB over the 50-MHz to 6-GHz range.

I. INTRODUCTION

SIGNIFICANT advances in GaAs FET's have made it possible to realize gigabit systems. The gigabit-per-second data rate systems need amplifiers which exhibit flat gain of 20 dB or more over the frequency range from below several hundred kilohertz to above several gigahertz. In addition to these performances, low input and output voltage standing wave ratio (VSWR) is also required, especially for communication applications such as ultrahigh-speed pulse-code modulation (PCM) and optical communication systems.

A conventional approach to achieving these requirements is to use capacitor–resistor (C–R) coupled amplifier configuration, with feedback and/or peaking circuits, as the case may be.

Qualitative frequency-gain behaviors for the C–R coupled amplifier, the C–R coupled amplifier with the negative feedback circuit and the C–R coupled amplifier with the peaking circuit are shown comparatively in Fig. 1. $|S_{21}|$ of a conventional GaAs field-effect transistor (FET) having from 0.5- to 1.5-μm gate length is constant below the frequency range from 0.5 to 2 GHz and exhibits a 6-dB/octave rolloff above that frequency range. Accordingly, the bandwidth of the simple C–R coupled GaAs FET amplifiers, including direct coupled amplifiers, cannot be extended above about 2 GHz.

To achieve wider bandwidth, additional techniques, such as negative feedback and peaking techniques, have been used [1], [2]. However, there are two major disadvantages in negative feedback amplifiers. These are 1) degradation of amplifier gain, since the negative feedback amplifier has a constant value for gain–bandwidth product, and 2) added design difficulty in impedance matching. For the peaking technique, the bandwidth cannot be extended significantly since it is used in the C–R coupled amplifier.

Meanwhile, as shown in Fig. 1, the gain of the C–R coupled amplifier is low, compared with the maximum available gain (MAG) of the GaAs FET.

In conventional microwave amplifiers, lossless circuit elements such as lumped-element capacitors, inductors, and distributed transmission lines are usually used for impedances matching [3] or positive feedback [4] to achieve MAG at the upper band edge. However, not only do impedances for these lossless circuit elements depend upon frequencies, but also the number of sections of the matching network is limited from a practical point of view. Consequently, ultrabroad-band impedance matching using these lossless circuits is very difficult. Usually bandwidths for the broad-band multistage microwave amplifier are from 1 to 3 octaves. As a matter of fact, the bandwidths of these microwave amplifiers are too narrow to use for baseband pulse amplification in the gigabit data rate systems.

If the C–R coupled amplifier low-frequency characteristics and the lossless matched microwave amplifier characteristics are combined, the GaAs FET high-frequency capability can be utilized to obtain a ultrabroad-band amplifier.

The purpose of this paper is to present a novel ultra-
broad-band amplifier configuration suitable for GaAs FET's, and to demonstrate the performance of developed ultrabroad-band GaAs FET amplifiers. The novel amplifier circuit operates as the C–R coupled amplifier circuit in the low-frequency range in which $|S_{21}|$ for the GaAs FET's is constant. It also operates as the lossless impedance matching circuit in the microwave frequency range in which $|S_{21}|$ for the GaAs FET's has a slope of approximately -6 dB/octave. Using this circuit configuration, an 800-kHz to 9.5-GHz band, 8.6-dB gain amplifier module, in which 13.5-octave bandwidth has been achieved, has been developed. The amplifier module has 40-ps step response time. It also has low input and output VSWR. By cascading two amplifier modules, 19-dB gain over the 800-kHz to 8.5-GHz range and 50-ps step response rise time have been obtained. A 14-dB gain, 700-kHz to 6-GHz band amplifier module has also been developed. The noise characteristics are discussed.

II. CIRCUIT DESIGN

A. Configuration

An impedance matching technique for multistage amplifiers which have interstage matching networks is much more difficult than that for single-stage amplifiers. In order to obtain high gain, however, a multistage amplifier circuit configuration is necessary. Accordingly, design considerations have been made on two-stage amplifiers.

Schematic diagrams for a conventional C–R coupled amplifier, a conventional microwave amplifier and a newly developed amplifier are shown in Fig. 2. In the figure, source grounded GaAs FET's are used. All coupling (dc blocking) capacitors and RF bypass capacitors are omitted for convenience, because these capacitors only affect a low-cutoff frequency. Fig. 2(a) shows the C–R coupled amplifier which is generally used for baseband pulse amplification. In the low-frequency range, the input impedances for source grounded GaAs FET's are very high, compared with the signal source impedance, which is usually 50 Ω. Accordingly, by selecting R_1 to be r, low VSWR at the input port is achieved. Load resistance for the first stage FET (FET 1) is decided mainly by R_2. Considering the output impedance for the second-stage FET (FET 2), R_3 is chosen to achieve low VSWR at the output port. Load resistance for the amplifier r_t is usually 50 Ω.

Fig. 2(b) shows a typical two-stage microwave amplifier using lossless low-pass impedance matching networks N_1, N_2, and N_3. The impedance is matched to obtain MAG at the upper band edge.

Fig. 2(c) shows a newly developed amplifier schematic diagram. In the figure, N_1, N_2, and N_3 are low-pass lossless impedance matching networks, and F_1, F_2, and F_3 are low-pass lossless impedance transformers. Resistors R_1, R_2, and R_3 have the same values, respectively, as in Fig. 2(a) and N_1, N_2, and N_3 have the same values, respectively, as in Fig. 2(b). By means of transformers F_1, F_2, and F_3, resistors R_1, R_2, and R_3 are transformed into high impedances in the microwave frequency range so that these resistors do not affect microwave impedance matching. The microwave impedance matching is achieved by N_1, N_2, and N_3, just like the circuit in Fig. 2(b). Meanwhile, N_1, N_2, N_3, F_1, F_2, and F_3 in Fig. 2(c), which are all low-pass form elements, operate as circuits having short electrical length in the low-frequency range. The low-frequency range gain is determined by R_1, R_2, and R_3.

Amplifier gains both in the low-frequency range and in the microwave frequency range can be established individually. To apply the circuit to flat-gain ultrabroad-band amplifiers, the gains in both frequency ranges are designed to be the same. A gain ripple which may occur in a crossover frequency range between the low and the microwave frequency ranges can be flattened by proper design.
using a computer simulation. The simulation results are demonstrated in the next section.

B. Ultrabroad-Band Amplifier Module Design

The GaAs FET’s used in the amplifier modules are V-218 FET’s (NEC). The FET gate length and total gate width are 1.0 and 400 μm, respectively. The FET has two-cell and recessed gate structure. Saturated drain current I_{DSS} is 120 mA and pinchoff voltage V_P is –2.2 V.

S parameters for a V-218 FET are shown in Fig. 3. The S parameters in the figure are extracted using the FET equivalent circuit element values which are determined by computer data fitting techniques for the measured S parameters.

Two categories (Model A and Model B) of amplifier modules were designed. Equivalent circuits for the Model A and the Model B are shown in Figs. 4(a) and (b), respectively.

Model A was designed to have a wider bandwidth but a lower gain compared to Model B. Using microstrip line type single section impedance transformers, the low-pass transformers (F_1, F_2, and F_3) in Fig. 2(c) are realized. Microstrip lines and stubs are also adopted for input, interstage and output low-pass matching networks (N_1, N_2, and N_3).

F_3 in Fig. 2(c) is omitted in Model A and N_1, N_2, and N_3 in Fig. 2(c) are omitted in Model B. Resistances R_3 and R_4 in gate bias voltage supply circuits are high enough not to affect the low frequency and the microwave circuits. C_1, C_4, and C_5 are coupling (dc blocking) capacitors. C_2, C_3, and C_6 are RF bypass capacitors. Designed circuit parameters are shown in Table I.

<table>
<thead>
<tr>
<th>Table I</th>
<th>Designed Circuit Parameters for Model A and Model B</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S_2)</td>
<td>R_1 R_2 R_3 R_4 R_5 $(Q^2)X(mm)$ Z_1/X Z_2/X Z_3/X Z_4/X Z_5/X Z_6/X Z_7/X $(Q^2)^P$ C_1 C_4 C_5 C_2 C_3 C_6</td>
</tr>
<tr>
<td>Model A</td>
<td>50 37 3000 75 100/1.7 100/1.7 48/1.6 26/5.2 40/1.4 100/1.7 100/0.5 3300 21300</td>
</tr>
<tr>
<td>Model B</td>
<td>50 50 3000 300 100/5 100/4 33/5.6 — — — — 3300 21300</td>
</tr>
</tbody>
</table>
A simulated frequency-gain characteristic for the Model A amplifier module is shown in Fig. 5. That for the Model B amplifier module is shown in Fig. 6. As shown in the figures, the Model A amplifier module band reaches 10.5 GHz with 10-dB gain and the Model B amplifier module band reaches 7 GHz with 15-dB gain. Low-cutoff frequencies of the amplifier modules are due to the coupling capacitors. For the matching network design in the microwave frequency range, computer-aided design optimization was used.

C. Circuit Description

Photographs of Model A and Model B amplifier modules are shown in Fig. 7. Coupling and RF bypass capacitors are multilayer high dielectric constant ceramic capacitors. These capacitors were tested in a 50-Ω system, in advance, over the 2-GHz to 8-GHz range. The VSWR for these capacitors is less than 1.5 over the frequency range. Resistors and microstrip lines are fabricated on 0.635-mm thick alumina ceramic plates having a Au–Cr–Ta₂N metal system. The rated sheet resistance for the Ta₂N film is 50 Ω.

Fig. 8 shows an equivalent circuit for an input microwave matching circuit in Model A, and two microstrip configurations for the equivalent circuit. In the circuit configuration in Fig. 8(b), when microstrip-conductor widths of the stubs are not negligibly narrow compared with the microstrip line lengths (characteristic impedances for the stubs are low), it is difficult to realize equivalent electrical angles γ₁, γ₂, and γ₃ (where γ is propagation constant) which are shown in Fig. 8(a).

Y parameters for a transmission line having characteris-
HONJO AND TAKAYAMA: AMPLIFIERS FOR Gbit/s DATA RATE SYSTEMS

633

tic impedance Z_0, propagation constant γ, and length l are
given by

$$(Y) = \begin{bmatrix} \frac{\cosh \gamma l}{Z_0 \sinh \gamma l} & -1 \\ -1 & \frac{Z_0 \sinh \gamma l}{\cosh \gamma l} \end{bmatrix}.$$ \hfill (1)

Accordingly, Y parameters (Y_n) for n parallel transmission
lines are calculated as

$$(Y_n) = \begin{bmatrix} \frac{\cosh \gamma l}{(Z_0/n) \sinh \gamma l} & -1 \\ -1 & \frac{(Z_0/n) \sinh \gamma l}{\cosh \gamma l} \end{bmatrix}$$ \hfill (2)

where n is a positive integer.

As shown in (2), the n parallel transmission lines for
characteristic impedance Z_0 are equivalent to a transmission
line with characteristic impedance Z_0/n, having the
same line length. The relation between microstrip-conductor
width W for characteristic impedance Z_0 and strip conduc-
tor width W_n for characteristic impedance Z_0/n is as
shown in the following:

$$\frac{W}{W_n} \approx \frac{1}{n^2}.$$

By substituting a stub with characteristic impedance Z_2
and length l_2 by two parallel stubs with characteristic
impedance $Z_2/2$ and length l_2, the sum of microstrip-
conductor widths for the stubs can be reduced. Therefore,
the circuit configuration in Fig. 8(c) is more suitable than
that in Fig. 8(b), for the stubs having low characteristic
impedances. All circuit components were mounted on a
metal carrier measuring 3 cm \times 3 cm.

IV. PERFORMANCE

A. Frequency-Domain Characteristics

The gain-frequency characteristic measured in a 50-Ω
system for the Model A amplifier module is shown in Fig.
5. An 8.6-dB gain is obtained over the 3-dB bandwidth
from 800 kHz to 9.5 GHz. A 13.5-octave bandwidth is
achieved. Fig. 9 shows input and output VSWR for the
800-kHz to 9.5-GHz amplifier module. The input VSWR is
lower than 2 over the 2-MHz to 1-GHz range and is lower
than 4 over the 1-MHz to 10-GHz range. For the output
VSWR, less than 2 can be obtained over the 2-MHz to
9-GHz range. Input–output power responses for the
amplifier module, measured at 0.5 GHz, 1 GHz, 4 GHz,
and 8 GHz, are shown in Fig. 10. The amplifier module
has a 12-dBm power output at 1-dB gain compression over
the frequency range, from 0.5 GHz to 8 GHz.

Gain-frequency characteristic for the Model B amplifier
module is also shown in Fig. 6. A 14-dB gain is obtained
over the 3-dB bandwidth from 700 kHz to 6 GHz. For
pulse amplifications, a linear phase (nondispersive) char-
acteristic as well as a flat-gain characteristic are required.
Fig. 11 shows a measured phase-frequency characteristic
for the Model B amplifier module. As seen in the figure,
the amplifier modules has approximately linear phase across
the frequency band.

By cascading two 800-kHz to 9.5-GHz amplifier mod-
ules without any external matching, 19-dB gain is obtained
over the 800-kHz to 8.5-GHz band. The result is also
shown in Fig. 5. The gain-frequency characteristic has a slight gain slope caused by R_2 of the second amplifier module. The R_2 value measured for the fabricated second amplifier module was higher than the designed value. Adjusting the R_2 value lower, so that the gain of the low-frequency range is reduced a flat gain will be achieved. The experimental result for the cascade amplifier demonstrates that, by cascading the amplifier modules, higher gain can be obtained without serious bandwidth degradation.

B. Time-Domain Characteristics

Step responses for the 800-kHz to 9.5-GHz amplifier module and the cascade amplifier are shown in Fig. 12. Fig. 12(a) shows the input waveform having a 10-percent to 90-percent rise time of 75 ps. Both input and output waveforms for the 800-kHz to 9.5-GHz amplifier module are shown in Fig. 12(b). The input waveform is the same as in Fig. 12(a). Rise time for the output waveform is 85 ps. A well-known approximate relation involving real step response rise time for the amplifier output t_o measured rise time for the input waveform t_i and measured rise time for the output waveform t_o is given by

$$t_o^2 = t_i^2 - t_i^2.$$ \(3\)

Using above relation, t_o is calculated as 40 ps. There is another approximate relation between amplifier high-cut-off frequency f_c and t_o, as

$$f_c t_o \approx \frac{3}{2}.$$ \(4\)

From this relation, $t_o = 35 \text{ ps}$ is estimated. Results from (3) and (4) are in good agreement.

Fig. 12(c) shows a measured step response for the cascade amplifier, where the input waveform is the same as in Fig. 12(a). t_o is estimated as 50 ps. No serious rise time degradation in the cascade amplifier is observed. This can also be predicted from the gain-frequency characteristic for the cascade amplifier.

C. Noise

Since the developed amplifier module has 12-dBm power output at 1-dB gain compression, it can be used as a main amplifier in some systems. Noise characteristics matter little for main amplifiers. However, when using the amplifier module as a preamplifier, its noise figure (NF) is very important. Also, it has been reported that GaAs FET's have $1/f$ noise below several hundred megahertz [5]. Accordingly, noise characteristics for the 800-kHz to 9.5-GHz amplifier module were measured.

Fig. 13 shows the NF over the 10-MHz to 6-GHz range. Better than 8-dB NF was observed across the 50-MHz to 6-GHz range. As shown in the figure, NF has a $–0.8 \text{ dB/octave}$ slope across the 10-MHz to 50-MHz range.

To observe the noise characteristics below 10 MHz, output noise spectra for the amplifier module were measured using the spectrum analyzer. Fig. 14(a) shows the output noise spectra under bias supplied condition. Fig. 14(b) shows the output noise spectra without bias supply. As seen, amplifier output noise spectra have a $–3 \text{ dB/octave}$ slope below 4 MHz. This shows the existence of amplifier $1/f$ noise below 4 MHz. The NF variation caused by $±33$-percent drain current variation was within $±0.1 \text{ dB}$.

In the amplifier module, parallel 50-Ω resistor R_1 in Fig. 2 is used to reduce input VSWR in the low-frequency range. However, this resistor degrades the amplifier NF in
HONJO AND TARAYAMA: AMPLIFIERS FOR Gbit/s DATA RATE SYSTEMS

635

Fig. 14. Noise spectra for the 800-kHz to 9.5-GHz amplifier module. (a) With bias supply. (b) Without bias supply.

Fig. 15. Block diagram for NF explanation. (a) With parallel resistor. (b) Without parallel resistor.

the low-frequency range. To explain the magnitude of the NF degradation by R_1, Fig. 15 is presented. As shown in Fig. 15(a), amplifier module A is divided into two sections A' and B. NF (F) of section A' is given by

\[F = F_0 + \frac{R_n}{(2/r)} \left(\frac{2}{r - G_0} \right)^2 + B_0^2 \approx 2 \cdot \frac{R_n}{r} \]

where minimum NF for section A' is F_0, and source admittance, which gives $F_0 = Y_0 = G_0 + jB_0$. R_n is the equivalent noise resistance for section A'. NF (F') for amplifier module A is given by

\[F' = F_0 + \frac{F - 1}{G_{av}} = 2 \cdot F \approx 4 \cdot \frac{R_n}{r} \]

where F_0 is the NF for section B ($F_0 = 2$) and G_{av} is the available gain in section $B (G_{av} = \frac{1}{2})$. Meanwhile, the NF for amplifier A' in Fig. 15(b) is given by

\[F'' = F_0 + \frac{R_n}{(1/r)} \left(\frac{1}{r - G_0} \right)^2 + B_0^2 \approx \frac{R_n}{r} . \]

Assuming $F_0 \ll (R_n/r)$, $(1/r) \gg G_0$, and $1/r \gg B_0$, which is reasonable for source grounded GaAs FET's in the low-frequency range, NF ratio F'/F'' is approximated as

\[\frac{F'}{F''} \approx \frac{4R_n/r}{1R_n/r} = 4. \]

Consequently, the addition of section B causes nearly 6-dB NF degradation. To validate the result, NF values for the second 800-kHz to 9.5-GHz amplifier module, with and without R_1, were measured. As shown in Fig. 16, amplifier NF and gain without R_1 are about 6 dB better than amplifier NF and gain with R_1. However, input VSWR without R_1 becomes large.

Consequently, circuit configuration, which requires no parallel resistor, should be considered if NF is a matter of concern.

V. CONCLUSIONS

A novel ultrabroad-band amplifier design technique has been developed. The developed amplifier circuit operates as a C–R coupled amplifier circuit in the low-frequency range. It also utilized a lossless matching circuit in the microwave frequency range. Using this design method, an 800-kHz to 9.5-GHz bandwidth (13.5 octaves) amplifier module with 8.6-dB gain has been realized. The amplifier module has 40-ps step response rise time. It also has low input and output VSWR. By cascading two amplifier modules, 19-dB gain over the 800-kHz to 8.5-GHz range and 50-ps step response rise time were obtained. It was demonstrated that, by cascading the modules, higher gain can be obtained without degrading the bandwidth and the rise time. NF for the amplifier module is better than 8 dB over the 50-MHz to 6-GHz range.

The design examples presented in this paper have a simple circuit configuration. By increasing number of matching circuit sections and transformer sections, and by using shorter gate length FET's, wider bandwidth can be realized.
Reliability of Power GaAs FET's—Au Gates and Al–Au Linked Gates

ELIOT D. COHEN, SENIOR MEMBER, IEEE, ALAN C. MACPHERSON, SENIOR MEMBER, IEEE, AND ARISTOS CHRISTOU, MEMBER, IEEE

Abstract—An investigation of the reliability of two types of commercial microwave power GaAs FET's has been carried out. Mean-time-to-failure data for a device mounted face-up with Al gates but without an Al–Au couple is presented and similar data for a “flip-chip” mounted Au-refractory gate device is reviewed. The failure mechanisms for both devices are described.

I. INTRODUCTION

FOR SOME TIME, the Naval Research Laboratory (NRL) has been engaged in assessing the reliability of power GaAs FET's [1], [4]. The devices discussed in this paper were selected for evaluation for two reasons: 1) they are commercially available; and 2) they represent two different approaches to obviating a “gate void” problem [1]–[3] which occurs in devices with direct coupling between Al gate pad and Au. Such devices have very short mean-time-to-failures (MTTF's) as has been reported previously [1].

A causal relationship has now been established between the Al–Au couple and void formation [1]–[3]. There are at least two solutions to this problem: 1) the use of Au-refractory gates; 2) the Al gate in combination with a refractory link so that Au and Al do not come in contact. The Microwave Semiconductor Corporation (MSC) has chosen the first while Raytheon has chosen the second solution. Unfortunately, in the case of the Raytheon device, the “solution” has introduced a new failure mechanism. However, in both cases, the void problem does not appear as a failure mode.

Both types of devices tested, Raytheon LNC 832D FET's and MSC 88002 FET's, are fabricated on semi-insulating GaAs substrates with buffer layers between the substrate and active layer. They both also have ohmic contacts formed by depositing Au-Ge/Ni on an n+ layer. The Raytheon devices have one center-fed 1 X 500 pm Al gate stripe and produce a nominal power output of approximately 200 mW at X-band. A refractory barrier metal sandwich has been fabricated between the Al gate and Au bonding pad to eliminate a direct Al–Au connection.

The MSC devices have eight titanium–tungsten–gold (Ti–W–Au) gate stripes, each of 1 X 150-μm dimensions and yield a nominal 0.5 W of output power at X-band. These FET's are mounted in a “flip-chip” configuration. All of the Raytheon FET's and most of the MSC devices tested were supplied in delidded packages although a few of the MSC units were mounted in packages with covers.

II. TEST CONDITIONS

Before the devices were subjected to temperature accelerated life testing under RF conditions, a number of dc parameters were measured. These always included the normal grounded source transfer characteristics. In addition, gate-source current–voltage (I–V) characteristics were always measured. The latter proved to be the best indication of physical changes in the devices under test.