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Abstract—This project develops a deep-learning-based inverse
design framework for multilayer radio-frequency (RF) trans-
formers and passive circuit topologies, addressing the inefficiency
of manual, simulation-heavy workflows. A dataset was assembled
of 3,398 multilayer layouts encoded as 40x40×3 pixel grids paired
with scattering-parameter (S-parameter) responses sampled at
301 frequency points. A convolutional neural network (CNN) in
an autoencoder configuration was trained with Huber loss to
associate desired electrical behavior with pixel-level geometry.
On test data, the model achieved strong predictive perfor-
mance (average R-squared roughly equal to 0.95) and produced
layouts that, when validated in a High-Frequency Structure
Simulator (HFSS), exhibited the expected resonance, bandwidth,
and insertion/return loss behavior. These results indicate that
inverse design with deep learning can substantially accelerate
RF co-design for multilayer transformers without sacrificing
electromagnetic fidelity.

I. INTRODUCTION

Designing compact, high-performance RF transformers typ-

ically requires expert intuition and repeated parameter sweeps

in full-wave solvers, which imposes long iteration cycles

and limits exploration of large design spaces. Inverse design

re-frames the problem: rather than tuning predefined unit

components, it maps target S-parameter behavior directly to

geometry, enabling rapid generation of novel layouts—an idea

that has been demonstrated at scale in adjacent domains of

wave-based design [1] and shown effective for RF passives and

even power amplifiers [2]. This work focuses on multilayer

on-chip transformer structures, which introduce additional

electromagnetic coupling and parasitic interactions—but also

a richer topology space than single-layer approaches. Note

related work from Dr. Sensen Li’s group—PulseRF: Physics-

Augmented ML Modeling and Synthesis for High-Frequency

RFIC Design—which presents a physics-augmented machine-

learning framework to model and synthesize high-frequency

RFICs [3]. The objective of this project was to build and

validate a machine-learning tool that ingests representative

multilayer transformer data and returns candidate pixel layouts

whose electromagnetic responses meet desired specifications,

thereby reducing design turnaround time while maintaining

agreement with trusted simulation results.
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Fig. 1. Figure 1. Sample Coil Designs

II. APPROACH

A. Dataset and Representation

Two aligned arrays were curated: (i) input multilayer layouts

of shape (3398, 3, 40, 40), where the three channels encode

a bottom ground plane and two symmetric coil layers; and

(ii) output S-parameters of shape (3398, 12, 301), capturing

twelve unique S-parameter traces over 301 frequencies (as

shown in Figure 1). This pixel-based encoding gives the model

direct access to spatial features that drive electromagnetic

behavior. Data were split into training/validation/test subsets

using a randomized procedure with a fixed seed to ensure

reproducibility and balanced coverage of the design space.

B. Model and Training

A CNN autoencoder was implemented that compresses

input layouts into a latent representation (encoder) and recon-

structs candidate geometries via learned upsampling and 2D

transpositions (decoder) (as shown in Figure 2). Huber loss

was selected for robustness: it behaves quadratically for small

errors and linearly for outliers, which helps stabilize learning

around resonant regions where S-parameter magnitudes and

phases can change rapidly. Models were evaluated using

Mean Absolute Error (MAE), Mean Absolute Percentage Error

(MAPE), and R² on held-out data to capture absolute deviation,

relative accuracy across frequency, and variance explained,

respectively. Model capacity (e.g., number of convolutional

blocks) and optimization hyperparameters were tuned against

validation performance to balance generalization with compu-

tational cost.



Fig. 2. Figure 2. Block Diagram for CNN and Model

C. Simulation-Based Validation

Beyond statistical metrics, representative model outputs

were validated with HFSS to confirm that predicted layouts

manifest the intended electromagnetic behavior under full-

wave analysis. A Python workflow using scikit-rf automated

S4P parsing and visualization of magnitude/phase responses,

enabling quick checks of resonance placement, bandwidth

trends, and port-to-port coupling characteristics before deeper

analysis. This loop anchored the ML results to physically

meaningful behavior and guided incremental refinements to

training and selection criteria.

III. RESULTS

A. Predictive Accuracy

On validation data, the model achieved high fidelity across

S-parameters, with average R² values around 0.95. For a

representative sample, R² for imaginary/real parts included:

S11 ≈ 0.971/0.985

S12 ≈ 0.941/0.909

S13 ≈ 0.951/0.963

S14 ≈ 0.944/0.959

S33 ≈ 0.988/0.942

S34 ≈ 0.942/0.912

MAE remained low across the band, indicating small

absolute deviations, while MAPE highlighted the expected

sensitivity near resonances and nulls where target magnitudes

approach zero and percentage errors inflate. These comple-

mentary views—MAE for stability, MAPE for relative fidelity,

and R² for variance capture—show that the learned mapping

generalizes well over the frequency grid.

B. Layout Quality and Symmetry

Qualitatively, generated layouts preserved the expected

transformer symmetries and winding-like features across

layers. Side-by-side comparisons demonstrated close visual

agreement between outputs and targets drawn from the val-

idation set, suggesting that the latent representation captures

the spatial regularities that matter for coupling and impedance

transformation in multilayer contexts.

C. HFSS Verification

Full-wave simulations of selected outputs confirmed practi-

cal viability. Magnitude and phase plots showed resonance and

bandwidth characteristics aligned with targets, with insertion

and return-loss trends tracking the desired behavior over most

of the band. Deviations were most pronounced at higher

frequencies, where small geometric perturbations produce

larger electromagnetic differences due to stronger parasitic and

coupling effects—an expected limitation that points toward

data and loss-function refinements. This outcome is consistent

with the broader direction of ML-enabled inverse design seen

in PulseRF, while this contribution centers on multilayer pixel

representations and transformer-specific targets.

Efficiency and scalability. Compared with manual trial-and-

error sweeps, the workflow produced ranked design candi-

dates quickly, reducing solver-in-the-loop iterations to tar-

geted verification runs. This reallocation—from broad manual

exploration to focused simulation checks—shortens end-to-

end design time and opens the door to broader topology

exploration for multilayer components.

IV. CONCLUSION AND CAREER PLANS

This work demonstrates that a CNN-based inverse design

pipeline can generate multilayer transformer layouts whose

simulated responses closely match desired S-parameter tar-

gets, validating deep learning as a practical accelerator for

RF co-design. Near-term improvements include increasing

dataset diversity, refining the treatment of high-sensitivity

frequency regions, and exploring loss formulations that weight

resonant features more explicitly. Although I am currently

pursuing opportunities in industry, the scholarship experience

motivated me to apply for graduate school and reinforced

my plan to return to research-oriented work. The MTT-S

Scholarship—and the opportunity to engage with the commu-

nity at IMS—shaped my technical direction, broadened my

perspective on RF/microwave design, and strengthened my

commitment to advancing this line of work
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