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Abstract—This project develops a deep-learning-based inverse
design framework for multilayer radio-frequency (RF) trans-
formers and passive circuit topologies, addressing the inefficiency
of manual, simulation-heavy workflows. A dataset was assembled
of 3,398 multilayer layouts encoded as 40x40x3 pixel grids paired
with scattering-parameter (S-parameter) responses sampled at
301 frequency points. A convolutional neural network (CNN) in
an autoencoder configuration was trained with Huber loss to
associate desired electrical behavior with pixel-level geometry.
On test data, the model achieved strong predictive perfor-
mance (average R-squared roughly equal to 0.95) and produced
layouts that, when validated in a High-Frequency Structure
Simulator (HFSS), exhibited the expected resonance, bandwidth,
and insertion/return loss behavior. These results indicate that
inverse design with deep learning can substantially accelerate
RF co-design for multilayer transformers without sacrificing
electromagnetic fidelity.

I. INTRODUCTION

Designing compact, high-performance RF transformers typ-
ically requires expert intuition and repeated parameter sweeps
in full-wave solvers, which imposes long iteration cycles
and limits exploration of large design spaces. Inverse design
re-frames the problem: rather than tuning predefined unit
components, it maps target S-parameter behavior directly to
geometry, enabling rapid generation of novel layouts—an idea
that has been demonstrated at scale in adjacent domains of
wave-based design [1] and shown effective for RF passives and
even power amplifiers [2]. This work focuses on multilayer
on-chip transformer structures, which introduce additional
electromagnetic coupling and parasitic interactions—but also
a richer topology space than single-layer approaches. Note
related work from Dr. Sensen Li’s group—PulseRF: Physics-
Augmented ML Modeling and Synthesis for High-Frequency
RFIC Design—which presents a physics-augmented machine-
learning framework to model and synthesize high-frequency
RFICs [3]. The objective of this project was to build and
validate a machine-learning tool that ingests representative
multilayer transformer data and returns candidate pixel layouts
whose electromagnetic responses meet desired specifications,
thereby reducing design turnaround time while maintaining
agreement with trusted simulation results.
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Fig. 1. Figure 1. Sample Coil Designs

II. APPROACH

A. Dataset and Representation

Two aligned arrays were curated: (i) input multilayer layouts
of shape (3398, 3, 40, 40), where the three channels encode
a bottom ground plane and two symmetric coil layers; and
(ii) output S-parameters of shape (3398, 12, 301), capturing
twelve unique S-parameter traces over 301 frequencies (as
shown in Figure 1). This pixel-based encoding gives the model
direct access to spatial features that drive electromagnetic
behavior. Data were split into training/validation/test subsets
using a randomized procedure with a fixed seed to ensure
reproducibility and balanced coverage of the design space.

B. Model and Training

A CNN autoencoder was implemented that compresses
input layouts into a latent representation (encoder) and recon-
structs candidate geometries via learned upsampling and 2D
transpositions (decoder) (as shown in Figure 2). Huber loss
was selected for robustness: it behaves quadratically for small
errors and linearly for outliers, which helps stabilize learning
around resonant regions where S-parameter magnitudes and
phases can change rapidly. Models were evaluated using
Mean Absolute Error (MAE), Mean Absolute Percentage Error
(MAPE), and R? on held-out data to capture absolute deviation,
relative accuracy across frequency, and variance explained,
respectively. Model capacity (e.g., number of convolutional
blocks) and optimization hyperparameters were tuned against
validation performance to balance generalization with compu-
tational cost.



Fig. 2. Figure 2. Block Diagram for CNN and Model

C. Simulation-Based Validation

Beyond statistical metrics, representative model outputs
were validated with HFSS to confirm that predicted layouts
manifest the intended electromagnetic behavior under full-
wave analysis. A Python workflow using scikit-rf automated
S4P parsing and visualization of magnitude/phase responses,
enabling quick checks of resonance placement, bandwidth
trends, and port-to-port coupling characteristics before deeper
analysis. This loop anchored the ML results to physically
meaningful behavior and guided incremental refinements to
training and selection criteria.

ITI. RESULTS
A. Predictive Accuracy

On validation data, the model achieved high fidelity across
S-parameters, with average R? values around 0.95. For a
representative sample, R? for imaginary/real parts included:

S11 ~ 0.971/0.985
S12 ~ 0.941/0.909
S13 ~ 0.951/0.963
S14 =~ 0.944/0.959
S33 ~ 0.988/0.942
S34 ~ 0.942/0.912

MAE remained low across the band, indicating small
absolute deviations, while MAPE highlighted the expected
sensitivity near resonances and nulls where target magnitudes
approach zero and percentage errors inflate. These comple-
mentary views—MAE for stability, MAPE for relative fidelity,
and R? for variance capture—show that the learned mapping
generalizes well over the frequency grid.
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B. Layout Quality and Symmetry

Qualitatively, generated layouts preserved the expected
transformer symmetries and winding-like features across
layers. Side-by-side comparisons demonstrated close visual
agreement between outputs and targets drawn from the val-
idation set, suggesting that the latent representation captures
the spatial regularities that matter for coupling and impedance
transformation in multilayer contexts.

C. HFSS Verification

Full-wave simulations of selected outputs confirmed practi-
cal viability. Magnitude and phase plots showed resonance and
bandwidth characteristics aligned with targets, with insertion
and return-loss trends tracking the desired behavior over most
of the band. Deviations were most pronounced at higher
frequencies, where small geometric perturbations produce
larger electromagnetic differences due to stronger parasitic and
coupling effects—an expected limitation that points toward
data and loss-function refinements. This outcome is consistent
with the broader direction of ML-enabled inverse design seen
in PulseRF, while this contribution centers on multilayer pixel
representations and transformer-specific targets.

Efficiency and scalability. Compared with manual trial-and-
error sweeps, the workflow produced ranked design candi-
dates quickly, reducing solver-in-the-loop iterations to tar-
geted verification runs. This reallocation—from broad manual
exploration to focused simulation checks—shortens end-to-
end design time and opens the door to broader topology
exploration for multilayer components.

IV. CONCLUSION AND CAREER PLANS

This work demonstrates that a CNN-based inverse design
pipeline can generate multilayer transformer layouts whose
simulated responses closely match desired S-parameter tar-
gets, validating deep learning as a practical accelerator for
RF co-design. Near-term improvements include increasing
dataset diversity, refining the treatment of high-sensitivity
frequency regions, and exploring loss formulations that weight
resonant features more explicitly. Although I am currently
pursuing opportunities in industry, the scholarship experience
motivated me to apply for graduate school and reinforced
my plan to return to research-oriented work. The MTT-S
Scholarship—and the opportunity to engage with the commu-
nity at IMS—shaped my technical direction, broadened my
perspective on RF/microwave design, and strengthened my
commitment to advancing this line of work
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