
1

Physics-Informed Deep Operator Network for 3-D

Time-Domain Electromagnetic Modeling
Shutong Qi, Graduate Student Member, IEEE and Costas D. Sarris, Fellow, IEEE

Abstract—In this project, we develop a physics-informed deep
operator network (PI-DON) for solving realistic 3-D electromag-
netic problems. The training process of PI-DON is unsuper-
vised, eliminating the need to generate ground-truth data and
thereby improving efficiency compared to traditional deep neural
networks. As an electromagnetic solver, PI-DON demonstrates
competitive efficiency compared to finite-difference time-domain
(FDTD) for a single run, even when accounting for training time.
After training, PI-DON demonstrates strong generalizability,
enabling accurate and efficient modeling of cases with geometric
and material variations, making it well-suited for uncertainty
analysis and design optimization. We show the high accuracy,
efficiency, and robust generalizability of the PI-DON solver
through the modeling and uncertainty analysis of realistic 3-D
electromagnetic problems.

Index Terms—Computational electromagnetics, electromag-
netic fields, machine learning, physics-informed neural networks.

I. MOTIVATION

PHYSICS-informed neural networks (PINNs) have

emerged as a promising approach in computational

physics. Despite the popularity and theoretical effectiveness

of PINNs, they suffer from significant challenges, including

poor training efficiency, unknown generalizability, and

difficulties in scaling to larger domains, which limit their

applications to real-world problems. To address these

limitations, Deep Operator Networks (DeepONets) offer a

more flexible framework by learning nonlinear operators that

map input functions to output functions. Unlike PINNs, which

solve individual instances, DeepONets generalize across a

family of problems. Their operator-based formulation and

decoupling of training from geometry-specific constraints

improve scalability and adaptability, making them well-

suited for complex electromagnetic simulations. Thus,

combining the physics-informed structure of PINNs with

the operator-learning capabilities of DeepONets presents a

promising direction for solving electromagnetic problems

more efficiently and robustly.

II. PROPOSED METHOD

We develop a Physics-Informed Deep Operator Network

(PI-DON) for solving Maxwell’s equations in the time do-

main, with a focus on realistic 3D electromagnetic prob-

lems. The workflow of the proposed PI-DON is illustrated

in Fig. 1. The core of this approach involves training a
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neural operator—termed the Deep Curl Operator (DCO)—to

approximate the spatial curl operator, using a modified 3D

U-net architecture. This U-Net architecture incorporates 3D

convolutional filters to process three-dimensional inputs and

includes an additional down-sampling path, resulting in two

separate encoding routes: one for input fields and another for

spatial coordinates. This design enables the network to operate

as a neural operator.

Then, the DCO is embedded within a physics-informed

framework to construct the PI-DON solver. In this stage,

the curl operator in Maxwell’s equations is approximated by

the DCO, while the time derivative of the electromagnetic

fields is computed using a centered finite-difference method.

To ensure accuracy in time-domain simulations for a given

problem, the DCO is further trained using a physics-informed

loss function derived from standard FDTD update equations.

Material properties, boundary conditions, and sources are

incorporated during this process.

The PI-DON framework offers several key advantages over

traditional physics-informed machine learning approaches.

First, by learning the curl operator rather than the full field so-

lution, it reduces training complexity and computational cost.

Second, due to the fully convolutional architecture of the DCO,

PI-DON can handle input fields of arbitrary spatial dimen-

sions, enabling flexible application to different computational

domains. Third, once trained, PI-DON demonstrates strong

generalizability across similar problem instances, making it

especially effective for tasks involving repetitive simulations.

We apply the PI-DON to simulate various electromagnetic

problems and demonstrate its accuracy and efficiency in

uncertainty analysis. This work highlights the application of

physics-informed machine learning for practical electromag-

netic modeling. A journal paper based on this study has been

accepted by IEEE Transactions on Microwave Theory and

Techniques [1].

III. NUMERICAL RESULTS

Numerical experiments were conducted to evaluate the

effectiveness of PI-DON across a range of practical problems.

The PI-DON was first applied to simulate the well-known

benchmark microwave structures of [2], including a microstrip

low-pass filter and a microstrip branch-line coupler. Then, the

PI-DON was used to simulate an SRR/strip wire unit cell,

following the geometry described in [3]. Unlike data-driven

models, PI-DON was trained in an unsupervised manner,

eliminating the need for ground-truth data and significantly

reducing training overhead. Even when accounting for training
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Fig. 1. Workflow of the Physics-Informed Deep Operator Network (PI-DON) for solving Maxwell’s equations. (a) A modified 3D U-Net is trained to
approximate the curl operator, forming the Deep Curl Operator (DCO). (b) The DCO is embedded in the PI-DON framework to solve Maxwell’s equations
with incorporated material properties, boundary conditions, and source terms. Once trained, the PI-DON generalizes well to variations in geometry and materials,
making it suitable for uncertainty analysis. (c) Key features of PI-DON: unconditional stability, strong generalizability, and efficient parallel execution on
GPUs. The right panel also shows the mean |S21| and 90% confidence interval for the planar microstrip filter shown in (b), computed using PI-DON across
Monte Carlo trials.

TABLE I
EXECUTION TIME COMPARISON BETWEEN FDTD AND PI-DON FOR

MONTE CARLO EXPERIMENTS AND ACCURACY OF PI-DON

Geometry
MC FDTD

(hours)
MC PI-DON

(hours)
MRE of PI-DON

Filter 32.50 0.23 4.6× 10
−3

Coupler 32.19 0.18 3.2× 10
−3

SRR 153 1.05 2.8× 10
−3

time, the execution time of PI-DON was comparable to or

shorter than that of FDTD. Across all test cases, the trained

PI-DON had a mean relative error (MRE) on the order of

10
−3.

Once trained on a specific case, PI-DON can accu-

rately solve a range of similar problems without retrain-

ing. Additionally, its time step is not constrained by the

Courant–Friedrichs–Lewy (CFL) condition. Instead, the time

step can be set based on accuracy, further improving the

computational efficiency. Moreover, the PI-DON can be run

in parallel on GPUs. These features make PI-DON well-suited

for tasks requiring repetitive simulations, such as uncertainty

analysis and design optimization. In this study, the trained

PI-DON models were used to conduct large-scale uncertainty

analysis via Monte Carlo (MC) simulations. For each case,

over 1000 MC trials were performed with varying geometric

and material parameters. PI-DON demonstrated significant

computational efficiency in Monte Carlo (MC) simulations.

Table I compares the execution time and corresponding MRE

between PI-DON and FDTD across different cases. The results

show that PI-DON provides over 100× speedup compared to

FDTD, without sacrificing accuracy.

IV. FUTURE DIRECTIONS AND IMS EXPERIENCE

The MTT-S Graduate Fellowship has played an important

role in shaping my career goals. It provided both recognition

and resources that encouraged me to deepen my expertise

in scientific machine learning and numerical modeling. The

support from this program has reinforced my confidence in

continuing on this interdisciplinary path. Looking ahead, I

plan to pursue a career that focuses on numerical methods

and machine learning, whether in academia or industry. I am

particularly interested in roles that involve the development

or application of computational techniques to solve real-world

electromagnetic or multi-physics problems.

Attending IMS 2024 was a valuable and eye-opening expe-

rience. I was especially impressed by the scale and breadth of

the industry exhibition, which highlighted the close connection

between academic research and commercial innovation. It was

also a great opportunity to engage with leading researchers and

industry experts, exchange ideas, and explore emerging trends

in the field of microwave engineering. This experience has

further motivated me to contribute to impactful research and

practical solutions in this area.
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