Hybrid Metallo-Dielectric Waveguide and its Applications in THz Circuits Design

Chun-Mei Liu, Graduate Student Member, IEEE and Ke Wu, Fellow, IEEE

Abstract—This report introduces a hybrid metallo-dielectric waveguide (HMDW) architecture, where non-radiative dielectric (NRD) waveguide is deployed at circuit discontinuities to suppress leakage, while dielectric waveguide (DW) is applied to discontinuity-free circuit sections to minimize conductor loss related to metal layers with finite conductivity, and applies it to THz circuit design. With the hybrid waveguide architecture, the dielectric waveguide bend can be made compact (about 0.19 space wavelength at the center operating frequency) with a reasonable insertion loss. The hybrid waveguide is also employed to reduce the crosstalk of crossover enabled by mode conversion and mode selectivity. The HMDW architecture enables flexible routing, simplifying the circuit design. Moreover, its metallized-via-free structure significantly relaxes the requirement for THz manufacturing process.

Index Terms—Compact, dielectric waveguides (DWs), hybrid metallo-dielectric waveguides (HMDWs), leakage reduction, low-loss, non-radiative dielectric (NRD) waveguides, metallized-via-free, terahertz (THz).

I. INTRODUCTION

DIFFERENT types of the transmission guide [1], such as microstrip line, co-planar waveguide, metallic waveguide, and substrate-integrated waveguide (SIW) [2], are successfully applied in previous communication systems. However, these transmission lines, which are metal-supporting structures, are not practical in THz band circuits because of the frequency-dependent conductor loss. Dielectric waveguide (DW) [3], widely used in optic circuits, exhibits a potential in the THz circuit due to the absence of the conductor loss. However, it suffers from radiation leakage whenever discontinuities occur. A developed waveguide at last century, namely, non-radiative dielectric (NRD) waveguide [4], exhibits an attractive feature: radiation free over discontinuities with a reasonable conductor loss when operating at LSM01 mode. Moreover, its metallized-via-free property also reduces the fabrication complexity, which is very important for THz band circuits.

Obviously, each transmission guides show certain advantages and imperfections for the highly-integrated circuits. Therefore, disruptive solutions are needed to make a paradigm shift in THz band platform, all the while preserving the attractiveness of the different transmission guides. The main research goals of this work are to propose, study and explore hybrid waveguide architectures and technologies with the enabling integration platforms of wireless functions and hardware structures.

II. HYBRID METALLO-DIELECTRIC WAVEGUIDE ARCHITECTURE

Although NRD waveguides allow sharp discontinuities, they show higher loss than DWs because of the finite conductivity of the lossy dielectric materials [5], [6]. A hybrid metallo-dielectric waveguide (HMDW) is proposed, studied and applied to compact circuits design and to suppress undesired crosstalk [7-10].

A. Straight HMDW

A back-to-back HMDW is shown in Fig. 1(a), consisting NRD waveguide and DWs. The mode compatibility between the LSM01 mode of the NRD waveguide and the fundamental E11 mode of the DW is verified by checking the three conditions that guarantee an efficient coupling when connecting two dissimilar waveguides, namely field matching, phase velocity matching and impedance matching [7]. Thanks to the good matching between two modes involved, the electromagnetic (EM) waves can pass through the interface between NRD and DW with a negligible insertion loss. Parasite structures can be used to further improve the transmission performance.

B. HMDW Bend

Instead of placing numerous metalized via holes around or fully shielding the discontinuities with metal coating or dielectric coating, we sandwich the DW bends with two parallel metal layers to form a non-radiative channel as shown in Fig. 1(b). Thus, EM waves can be confined between the two metal layers because of the boundary conditions. Meanwhile, the leakage over the bending area can be significantly suppressed because the field outside the dielectric strip is evanescent. Measured results in Fig. 1(c) suggest that the waveguide with NRD bends has comparable transmission performance to the straight hybrid waveguide, indicating the bending area is non-radiative. With the assistance of NRD, the radius of bend can be made 10 times smaller than that of DW bend with an expense of limited bandwidth [8]. Compact dividers and couplers based on the HMDW architecture can be developed, resulting in highly integrated topology in system level.

Chun-Mei Liu and Ke Wu are with the Poly-Grames Research Center and Department of Electrical Engineering, Polytechnique Montreal, Montreal, QC H3T 1J4, Canada (e-mail: chunmei.liu@polymtl.ca; ke.wu@polymtl.ca).
Hybrid metallo-dielectric waveguide (HMDW) architecture is presented. The mode conversion and mode selectivity of the HMDW architecture is studied. The NRD sections of the HMDW allow sharp discontinuities, giving more flexibility for the circuit design. Meanwhile, the DWs minimize the power dissipation. An optimized blending of different waveguides could maximally elevate the performance in system level.

IV. CAREER PLAN AND FELLOWSHIP IMPACT

The recognition of IEEE MTT-S Graduate Fellowship encouraged me and gave me so much confidence to continue my academic journey. Moreover, I am very grateful that the MTT-S educational committee made this financial support flexible, the travel grant from MTT-S Graduate Fellowship 2023 and Tom Brazil Fellowship would support me to attend IMS2024 this year at Washington DC. I sincerely believe that it will be a fantastic experience and I am very looking forward to it.

ACKNOWLEDGMENT

The authors would like to thank Dr. Louis-Philippe Carignan for helpful discussions and constructive suggestions in this project. The authors would like to thank Dr. Pascal Burasa and Jianye Mai for their help with the measurements. The authors would also like to thank the technical team of the Poly-GRAMES Research Center for their professional assistance in fabrication of all prototypes.

REFERENCES