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Vision-Aided Through-Obstruction Handheld
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Jacqueline M. Schellberg, Student Member, IEEE, and Sanjib Sur, Member, IEEE

Abstract—Traditional millimeter-wave imaging algorithms re-
quire millimeter-scale self-tracking, which handheld 5G smart
devices cannot reliably achieve. We propose to generate accurate
poses using the known relationship between the mmWave signals
and the device antenna spacing. Since the reconstructed mmWave
image may still appear degraded due to specularity or weak
reflectivity, we implement a Conditional Generative Adversarial
Network to generate human-perceptible 2D images.

Index Terms—Synthetic Aperture Radar Imaging, millimeter-
wave

I. INTRODUCTION

Mobile 5G smart devices have expanded sensing possibili-

ties for indoor localization and virtual reality, but these devices

cannot sense beyond visual obstructions. 5G smart devices

include millimeter-wave (mmWave) transceivers that could

be used for handheld through-obstruction imaging, enabling

several applications. (1) Security: A handheld imager could

eliminate congestion in airports while maintaining robust

security practices. (2) Disaster relief : The device could aid

first responders to image through debris in hard-to-reach loca-

tions. (3) Inventory management: Through-obstruction imag-

ing could account objects beyond packaging without contact,

limiting packaging waste.

Traditional mmWave imaging systems, such as airport secu-

rity scanners, use the Synthetic Aperture Radar (SAR) imaging

technique to generate detailed through-obstruction images.

SAR coherently combines signals transmitted and received at

different spatial locations to reconstruct a through-obstruction

image. Traditional SAR systems rely on expensive, bulky mo-

tion controllers to enable millimeter-scale tracking. However,

applying the SAR concept to handheld 5G smart devices has

been challenging, since 5G smart devices cannot generate ac-

curate poses for SAR focusing. What’s more, traditional SAR

autofocus algorithms [1] cannot correct the pose error beyond
1

4

th
of the system wavelength. For a mmWave device with a

wavelength of 3.90 mm, the positioning error must be less than

0.98 mm, but 5G smart devices are only capable of centimeter

scale self-tracking. The pose error would cause the mmWave

reflections to sum destructively during image reconstruction,

making the resultant output image imperceptible.

In this work, we design a system that corrects pose errors to

enable improved handheld mmWave imaging. The system uses

the mmWave signals themselves to provide a robust motion
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estimate and further improves image quality using machine

learning.

II. DESIGN

A. Pose Correction

To generate a focused image, SAR requires precise motion

tracking. Figure 3(b) shows a SAR image reconstructed of the

optical image of the object in Figure 3(a) using the pose output

from a vision-based self-tracking device. The pose error causes

the mmWave signals to add destructively, and the output image

appears heavily distorted. Thus, we must correct the poses to

enable high-quality mmWave imaging. To obtain an improved

initial pose estimate, we recover the device velocity using

the antenna spacings on the mmWave device, similar to [2].

We obtain signal reflections from two Rx antennas sharing a

transmit antenna, Rx1 and Rx2, separated by a distance H

along the direction of motion. We cross-correlate each frame

from Rx1 with surrounding received frames from Rx2. For

a system capturing mmWave frames at framerate F with an

antenna spacing H , the delay D is the number of frames at

which Rx1 experiences the same response as Rx2. Then, the

velocity Vi and the position Xi of the device at the ith frame

is:

Vi =
HFi

2Di

; Xi+1 = Xi +
Vi

F
(1)

However, since there is no depth-axis antenna spacing on the

device that can be used for velocity estimation, the Z (depth)

error accumulates and causes significant defocusing.

To overcome the depth-axis limitation, we divide each

pose trajectory into several overlapping segments and apply

a median filter to the Z-poses. From these segments, we

reconstruct small 3D mmWave sub-images in the overlapping

region. Since the poses within the overlapping region share

the same mmWave reflections but have different poses due to

drift, we register the sub-images to recover the offset between

the separate pose segments. Since each mmWave signal is

too sparse to register individual frames, we correct the poses

following the method in our poster [3]. Now, the image can be

reconstructed using the corrected poses to produce a coherent

mmWave image, as shown in Figure 3 (c).

B. Deep-Learning Based Image Quality Improvement

The image may appear degraded due the fundamental limits

of mmWave, such as specularity and weak reflectivity, that

cause transmitted signals to never return to the receiver. We

use a Conditional Generative Adversarial Network (cGAN)

to recover high-frequency details that could not be obtained

through pose correction, and implement it following [4].
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C. Data Collection and Post-Processing

We implement a custom setup that mimics a realistic hand-

held setup integrating a vision-based self-tracking module and

a mmWave device. We use the Intel RealSense T265 tracking

camera [5] since the pose accuracy is similar to commodity

self-localizing smartphones. We use the TI IWR1443 mmWave

radar [6] operating from 77-81 GHz to collect the mmWave

reflections with a depth resolution of 3.75 cm. The IWR1443

has 3 Tx and 4 Rx antennas, totaling 12 channels that can

be used for velocity estimation. The T265 and the mmWave

device cannot be triggered synchronously, and incorrect syn-

chronization would cause the mmWave signals to combine

destructively and produce a distorted image. To synchronize

the data, we post-process the received data to associate each

received mmWave signal to the correct pose following [3].

III. RESULTS

Since obtaining sub-millimeter accuracy ground-truth with

actual handheld motions is difficult, we use a mechanical

controller to automatically move the device along a pre-defined

18 × 18 cm2 grid (Figure 1).
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Figure 1. (a) 2D axis controller imaging setup; (b) T265 and TI IWR1443
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Figure 2. (a) MSE using raw T265 poses; (b) MSE using after pose correction

We have tested the accuracy of the pose correction by

comparing the mean squared error (MSE) of the poses against

the ground truth trajectory of the mechanical controller in

Figure 2. Additionally, we show that the pose correction

recovers coarse structure in Figure 3.

(b) (c)(a)

Figure 3. (a) Optical image of CD; (b) mmWave image generated using raw
poses from self-tracking device; (c) mmWave image after performing pose-
correction

Then, we test the cGAN by comparing the Structural

Similarity Index Measure (SSIM) score [7], which measures

the similarity between a ground truth image, with 0 being

least similar and 1 being most similar. Our system improves

the SSIM from .01 to .92, and the improvements can be seen

in Figure 4

(a) (b) (c)

Figure 4. (a) Optical image of scissors; (b) mmWave image generated using
raw poses from self-tracking device; (c) 2D image generated by cGAN

IV. CONCLUSION

In this work, we design and implement a system that

enables handheld mmWave imaging on 5G smart devices. We

use the antenna spacing and mmWave reflections to produce

an accurate motion estimate. Then, we correct the global

drift error by registering overlapping sub-images generated

using the locally accurate poses. Finally, we use a generative

machine learning framework to produce human-perceptible 2D

images.
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