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Abstract—Traditional millimeter-wave imaging algorithms re-
quire millimeter-scale self-tracking, which handheld 5G smart
devices cannot reliably achieve. We propose to generate accurate
poses using the known relationship between the mmWave signals
and the device antenna spacing. Since the reconstructed mmWave
image may still appear degraded due to specularity or weak
reflectivity, we implement a Conditional Generative Adversarial
Network to generate human-perceptible 2D images.

Index Terms—Synthetic Aperture Radar Imaging, millimeter-
wave

I. INTRODUCTION

Mobile 5G smart devices have expanded sensing possibili-
ties for indoor localization and virtual reality, but these devices
cannot sense beyond visual obstructions. 5G smart devices
include millimeter-wave (mmWave) transceivers that could
be used for handheld through-obstruction imaging, enabling
several applications. (1) Security: A handheld imager could
eliminate congestion in airports while maintaining robust
security practices. (2) Disaster relief: The device could aid
first responders to image through debris in hard-to-reach loca-
tions. (3) Inventory management: Through-obstruction imag-
ing could account objects beyond packaging without contact,
limiting packaging waste.

Traditional mmWave imaging systems, such as airport secu-
rity scanners, use the Synthetic Aperture Radar (SAR) imaging
technique to generate detailed through-obstruction images.
SAR coherently combines signals transmitted and received at
different spatial locations to reconstruct a through-obstruction
image. Traditional SAR systems rely on expensive, bulky mo-
tion controllers to enable millimeter-scale tracking. However,
applying the SAR concept to handheld 5G smart devices has
been challenging, since 5G smart devices cannot generate ac-
curate poses for SAR focusing. What’s more, traditional SAR
autofocus algorithms [1] cannot correct the pose error beyond
%th of the system wavelength. For a mmWave device with a
wavelength of 3.90 mm, the positioning error must be less than
0.98 mm, but 5G smart devices are only capable of centimeter
scale self-tracking. The pose error would cause the mmWave
reflections to sum destructively during image reconstruction,
making the resultant output image imperceptible.

In this work, we design a system that corrects pose errors to
enable improved handheld mmWave imaging. The system uses
the mmWave signals themselves to provide a robust motion
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estimate and further improves image quality using machine
learning.

II. DESIGN
A. Pose Correction

To generate a focused image, SAR requires precise motion
tracking. Figure 3(b) shows a SAR image reconstructed of the
optical image of the object in Figure 3(a) using the pose output
from a vision-based self-tracking device. The pose error causes
the mmWave signals to add destructively, and the output image
appears heavily distorted. Thus, we must correct the poses to
enable high-quality mmWave imaging. To obtain an improved
initial pose estimate, we recover the device velocity using
the antenna spacings on the mmWave device, similar to [2].
We obtain signal reflections from two Rx antennas sharing a
transmit antenna, Rx1 and Rx2, separated by a distance H
along the direction of motion. We cross-correlate each frame
from Rx1 with surrounding received frames from Rx2. For
a system capturing mmWave frames at framerate F' with an
antenna spacing H, the delay D is the number of frames at
which Rx1 experiences the same response as Rx2. Then, the
velocity V; and the position X; of the device at the ¢th frame
is:
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However, since there is no depth-axis antenna spacing on the
device that can be used for velocity estimation, the Z (depth)
error accumulates and causes significant defocusing.

To overcome the depth-axis limitation, we divide each
pose trajectory into several overlapping segments and apply
a median filter to the Z-poses. From these segments, we
reconstruct small 3D mmWave sub-images in the overlapping
region. Since the poses within the overlapping region share
the same mmWave reflections but have different poses due to
drift, we register the sub-images to recover the offset between
the separate pose segments. Since each mmWave signal is
too sparse to register individual frames, we correct the poses
following the method in our poster [3]. Now, the image can be
reconstructed using the corrected poses to produce a coherent
mmWave image, as shown in Figure 3 (c).

B. Deep-Learning Based Image Quality Improvement

The image may appear degraded due the fundamental limits
of mmWave, such as specularity and weak reflectivity, that
cause transmitted signals to never return to the receiver. We
use a Conditional Generative Adversarial Network (cGAN)
to recover high-frequency details that could not be obtained
through pose correction, and implement it following [4].
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C. Data Collection and Post-Processing

We implement a custom setup that mimics a realistic hand-
held setup integrating a vision-based self-tracking module and
a mmWave device. We use the Intel RealSense T265 tracking
camera [5] since the pose accuracy is similar to commodity
self-localizing smartphones. We use the TTI IWR1443 mmWave
radar [6] operating from 77-81 GHz to collect the mmWave
reflections with a depth resolution of 3.75 cm. The IWR1443
has 3 Tx and 4 Rx antennas, totaling 12 channels that can
be used for velocity estimation. The T265 and the mmWave
device cannot be triggered synchronously, and incorrect syn-
chronization would cause the mmWave signals to combine
destructively and produce a distorted image. To synchronize
the data, we post-process the received data to associate each
received mmWave signal to the correct pose following [3].

III. RESULTS

Since obtaining sub-millimeter accuracy ground-truth with
actual handheld motions is difficult, we use a mechanical
controller to automatically move the device along a pre-defined
18 x 18 cm? grid (Figure 1).
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Figure 1. (a) 2D axis controller imaging setup; (b) T265 and TI IWR1443
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Figure 2. (a) MSE using raw T265 poses; (b) MSE using after pose correction

We have tested the accuracy of the pose correction by
comparing the mean squared error (MSE) of the poses against
the ground truth trajectory of the mechanical controller in
Figure 2. Additionally, we show that the pose correction
recovers coarse structure in Figure 3.

Figure 3. (a) Optical image of CD; (b) mmWave image generated using raw
poses from self-tracking device; (c) mmWave image after performing pose-
correction

Then, we test the cGAN by comparing the Structural
Similarity Index Measure (SSIM) score [7], which measures
the similarity between a ground truth image, with 0 being
least similar and 1 being most similar. Our system improves
the SSIM from .01 to .92, and the improvements can be seen
in Figure 4

e

(@ .(b) -

Figure 4. (a) Optical image of scissors; (b) mmWave image generated using
raw poses from self-tracking device; (c) 2D image generated by cGAN

IV. CONCLUSION

In this work, we design and implement a system that
enables handheld mmWave imaging on 5G smart devices. We
use the antenna spacing and mmWave reflections to produce
an accurate motion estimate. Then, we correct the global
drift error by registering overlapping sub-images generated
using the locally accurate poses. Finally, we use a generative
machine learning framework to produce human-perceptible 2D
images.
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