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U
ntil the early 1970s, nearly all fi lter synthesis 
techniques were based on the extraction of 
electrical elements (lumped capacitors and 
inductors, transmission line lengths) from 
the polynomials that represented the fi lter’s 

electrical performance in mathematical terms. This was per-
fectly adequate for the technologies and applications that 
were available at the time, and many important contribu-
tions were made to the art of advanced fi lter transfer and 
refl ection polynomial generation, and then their conversion 
to electrical component values corresponding to the fi lter 
technologies that were available at this time [1]–[13].

In the early 1970s a revolution in telecommunication sys-
tems and available technology was taking place. The first 
satellite telecommunication systems were in operation and 
demand for their services was growing enormously, mean-
ing that the ratio-frequency (RF) spectrum allocated to sat-
ellite communication systems had to be pushed to higher 

 1527-3342/11/$26.00©2011 IEEE 

 Date of publication: 7 September 2011

FO
CUSED 

ISSUE FE
ATU

RE



October 2011  43

© BRAND X PICTURES

frequency bands to accommodate the in -
creasing volumes of traffic. The technology 
available to implement the components of 
these higher-frequency systems was also 
advancing, for example, better front-end 
low-noise amplifiers, high-power transmit 
amplifiers, antenna systems, and passive 
channelizing equipment. Also, the crowd-
ing of the available spectrum meant that 
the specifications on channel filters in terms 
of in-band linearity (group delay, insertion 
loss) and out-of-band selectivity (high close-
to-band rejection and, for transmit filters, 
lowest possible insertion loss), were getting 
more demanding.

During this period, two important ad -
vances were made in the field of filter design 
to address the new demands. The first was 
the development of the design methods for 
advanced filtering functions incorporat-
ing built-in transmission zeros (TZs) and 
group delay features aimed particularly at 
microwave filter implementation. Then the 
introduction of the reflex (sometimes called 
the “folded”) cross-coupled microwave fil-
ter [14]–[16], which allowed inter-resonator 
couplings, other than the usual main-line 
couplings between sequentially numbered 
resonators, to be implemented. These cross-
couplings, as they came to be known, enabled 
the realization of special features of a filtering 
function, namely TZs to give a high close-to-
band rejection of RF noise and interference, 
or linearization of in-band group delay, or 
both within the same filter structure.

The other major advance about this time 
was the development of dual-mode technol-
ogy for waveguide filters at  ComSat Labora-
tories [17]–[20] in response to very stringent 
performance requirements being imposed 
on spaceborne microwave equipment by the 
system designers. The innovation came in 
two parts—1) the development of the cou-
pling matrix method for the holistic design 
of the filter’s main and cross-coupling ele-
ments and 2) the propagating dual-mode 
waveguide configuration, which inherently 
provided the cross-couplings necessary for 
the realization of the special performance 
features without the need for complex and 
sensitive coupling elements.

The classic procedure for calculating the 
values of the coupling elements and reso-
nant frequencies for the prototype  filter 
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network, which forms the basis of the microwave 
filter design, involves first generating the polynomi-
als, which represent the transfer and reflection char-
acteristics (S21 and S11), required from the network in 
order to satisfy the specifications. Then the prototype 
elements (capacitors, inductors, lengths of transmis-
sion line) are extracted from the polynomials. As the 
network is built up element by element, the polynomi-
als decrease in degree until, when the network is fully 
synthesized, the coefficients of the polynomials are all 
zero apart from some constants. Different extraction 
strategies are required to obtain the specific topol-
ogy of the prototype network that corresponds to the 
electrical components available in the technology it is 
intended to realize the microwave filter with.

The coupling matrix network synthesis method 
provides an alternative to the extraction of electrical 
elements one by one. The coupling matrix is simply 
a representation of the network, which may be used 
for the initial design, then the tuning, modelling 
and analysis of microwave filter performance. One 
important feature is the one-to-one correspondence 
between the elements of the coupling matrix and the 
individual physical components of the filter. Although 

the initial design of a filter network (the prototype 
network) assumes frequency-independent coupling 
elements and lossless and dispersionless resonators, 
these real-world effects may be accommodated when 
analyzing the matrix for filter performance predic-
tion. Different characteristics may be allocated to dif-
ferent elements if there is a mix of technologies within 
the filter. Another advantage is the ability to recon-
figure the coupling matrix through similarity trans-
forms to arrive at a different coupling arrangement, 
corresponding to the available coupling elements of 
the particular microwave structure selected for the 
application. This can be done without going right back 
to the beginning of the network synthesis process to 
start again on a different network synthesis route, as 
would have to be done if the classical element extrac-
tion method was being used. More recently, coupling 
matrix synthesis theory has been advanced to include 
asymmetric filtering characteristics, which have 
become important for terrestrial telecommunication 
systems, particularly mobile telephony systems.

Because of the prevalence of the coupling matrix in 
microwave filter design, this article will concentrate on 
techniques for the synthesis and then the reconfigura-
tion of the coupling matrix, ready for realization in a 
variety of microwave structures. Firstly the method for 
the generation of advanced polynomial filtering func-
tions will be briefly outlined, followed by the synthe-
sis of one of the canonical networks—the transversal 
matrix. Then the reconfiguration of the transversal 
matrix into various forms for realization in a variety of 
microwave structures will be discussed. Some exam-
ples are given to clarify certain aspects of the design 
processes, and references cited if further information is 
required by the reader.

(2)

1F

½H ½H ½H½H ½H½H ½H½H

(i ) ( j ) (N – 1) (N )

1F 1F 1F

(1)

1F

1H

1F

1H

M1,N

i1 i2 ii ij iN – 1 iN

M1,N – 1

M1,j

M1,i

M2,N

MN – 1,N

M2,N – 1

M2,j

M2,iM1,2 Mj,N – 1

Mi,N – 1

Mi,j

Mi,N

Figure 1. Multicoupled network—classical bandpass prototype representation (courtesy of A.E. Atia).

In the early 1970s a revolution 
in telecommunication systems 
and available technology was 
taking place. The first satellite 
telecommunication systems were 
in operation and demand for their 
services was growing enormously.
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The Coupling Matrix
The basic circuit model that was used in [20] was a 
bandpass prototype which is a generalized multicou-
pled network as shown in Figure 1. The circuit com-
prises a cascade of lumped element series resonators 
intercoupled through transformers; each resonator 
comprising a capacitor of 1 Farad in series with the self 
inductances of the main-line transformers, which total 1 
Henry within each loop. This gives a centre frequency 
of 1 radian/second, and the couplings are normalized to 
give a bandwidth of 1 rad/sec. In addition every loop is 
theoretically coupled to every other loop through cross-
mutual couplings between the main-line transformers.

This network may be represented by an N 3N cou-
pling matrix where N is the number of resonators (the 
degree or order) of the filter. The elements of the matrix 
contain the values of the couplings between each of the 
resonators; between sequentially numbered resonator 
nodes (main-line couplings), and nonadjacent nodes 
(cross-couplings). Because the electrical elements of the 
network are passive and reciprocal, the matrix is sym-
metrical about its principal diagonal. To more closely 
represent a microwave circuit, the transformers may be 
replaced by immittance inverters (90° lengths of trans-
mission line), which approximate the electrical character-
istics of many microwave coupling devices. By placing 
an inverter at each end of the network, the input and 
output couplings of the filter may also be represented 
(Figure 2). With the extra inverters, the matrix increases 
to N12 3  N12 in size—the so-called N12 coupling 
matrix—and becomes the dual network of Figure 1.

The circuit in Figure 1 will only support symmetric 
filtering characteristics, but with the addition of a series-
connected frequency-invariant reactance (FIR) within 

each loop, the capability of the circuit may be extended 
to include asymmetric cases (see Figure 2). These have 
been finding increasing application recently, as the RF 
frequency spectrum becomes more crowded and rejec-
tion specifications more severe. The FIR (sometimes 
referred to as a self-coupling) represents a frequency 
offset of the resonator it is associated with, and its value 
is entered along the diagonal of the coupling matrix. 
Because the inverters are also frequency-invariant and 
there are no self-inductors, the network of Figure 2 may 
now be considered as a low-pass prototype, which sim-
plifies the synthesis process somewhat.

The N12 short-circuit admittance matrix 3y r 4 for 
the network of Figure 2 may be separated out into its 
purely resistive and purely reactive parts:

 3y r 4   5   3G 4   1   3jM 1 U 4   5   3G 4   1   3y 4 (1)

where the purely real matrix 3G 4 contains the conduc-
tive terminations GS and GL of the network and the 
purely reactive admittance 3y 4 5  3jM 1 U 4 is the sum 
of the coupling matrix M and the diagonal matrix U 
which contains the frequency variable s 15 jv 2 , except 
for USS and ULL which are zero.

The N12 coupling matrix [M] contains the val-
ues of all the couplings in the network including 
the input/output couplings (which may connect to 
internal resonators as well as the first and Nth). The 
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Figure 2. Multicoupled network—equivalent low-pass prototype modified to include FIRs and immittance inverters. 
(Reprinted with permission from [22].)

The coupling matrix network synthesis 
method provides an alternative to 
the extraction of electrical elements 
one by one. 
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diagonal contains the values of the frequency invari-
ant  reactances which represent resonator frequency 
offsets (the  negative values of the FIRs in Figure 2), 
which are necessary for asymmetric characteristics. 
Figure 3(a) shows a canonical coupling matrix which 
has all couplings present, and Figure 3(b) an example 
of a typical coupling and routing diagram, represent-
ing a possible inter-resonator coupling arrangement.

Synthesis Procedure
The filter design process begins with the generation 
of the rational polynomials embodying the transfer 
and reflection characteristics S21 and S11, which satisfy 
the rejection and in-band specifications of the appli-
cation. Once these have been obtained, the next step 
in the process is to synthesize the coupling matrix 

and configure it such that its nonzero entries coincide 
with the available coupling elements of the structure 
it is intended to use for realizing the filter response. 
Finally, the dimensions of the coupling elements are 
calculated from the coupling matrix values.

The procedure is illustrated in Figure 4 for a sixth-
degree characteristic with two TZs and realized in 
coupled waveguide resonator technology. The direct 
correspondence between the elements of the coupling 
matrix and the physical filter components is highlighted.

Generation of Transfer 
and Refl ection Polynomials
In modern telecommunication, radar and broadcast 
systems, where the allocated RF frequency spectrum 
has become very congested, the specifications on 
 performance from the component microwave filters 
have become increasingly stringent. For these applica-
tions the Chebyshev class of filtering characteristic is 
very suitable on account of the inherent equiripple in-
band return loss level and the ability to build in TZs to 
provide high close-to-band rejection levels or in-band 
group delay equalization, or both within the same 
filtering function. Moreover, the TZs may be placed 
asymmetrically to optimally comply with asymmetric 
specifications. A method for generating the low-pass 
prototype polynomials for the Chebyshev class of filter 
function is outlined below.

For any two-port lossless filter network composed 
of a series of N  intercoupled resonators, the transfer 
and reflection functions may be expressed as a ratio of 
two polynomials [21]:

 S11 1v 2 5
F 1v 2 /eR

E 1v 2     S21 1v 2 5
P 1v 2 /e
E 1v 2 , (2)

where

 e  5   
1

" 1 2 102RL/10 
 `P 1v 2

E 1v 2 `  s56j
,

and eR 5  1 or eR 5 e/"e221 if the function is fully 
canonical, and RL is the prescribed equiripple return 
loss level of the Chebyshev function in decibles. S11 1v 2  
and S21 1v 2  share a common denominator E 1v 2 .  The 
polynomials E 1v 2and F 1v 2  are both of degree N while 
the polynomial P 1v 2  carries the nfz transfer function 
finite-position TZs. For a Chebyshev filtering function 
e  is a constant normalizing S21 1v 2  to the equiripple 
level at v 5 61, and eR 5  1 except for fully canonical 
filters (i.e., nfz 5 N ).

The ratio CN 1v2 5 F 1v2 /P 1v2  is known as the “filter-
ing function” of degree N, and its poles and zeros are 
the roots of P 1v 2  and F 1v 2 , respectively. It has a form 
for the general Chebyshev characteristic [22]

 CN 1v2  5  cosh ca
N

n51
  cosh21 1xn 1v22d , (3)

Figure 3. (a) Fourth degree N+2 coupling matrix with 
all possible couplings. The core N3N matrix is indicated 
within the double lines. (b) An example of a coupling and 
routing diagram representing the coupling matrix of a 
fourth degree fully canonical network in cross-coupled folded 
configuration. (Reprinted with permission from [22].)
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The filter design process begins 
with the generation of the rational 
polynomials embodying the transfer 
and reflection characteristics.
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where

 xn 1v2  5  
12vvn

v2vn
,

and vn are the positions of the nfz finite-position TZs, 
and the remaining N 2  nfz zeros at v 5 6 `.

For a prescribed set of TZs that make up the poly-
nomial P 1v 2  and a given equiripple return loss level, 
the reflection numerator polynomial F 1v 2  may be built 
up with an efficient recursive technique, and then 
the polynomial E 1v 2  found from the conservation of 
energy principle [21]–[23].

An example of this synthesis method is given in [21] 
for a fourth-degree prototype with 22 dB return loss 
level and two imaginary axis TZs at s 5  1j 1.3217 and 
1j 1.8082 which are so positioned to give two rejection 

lobes at 30 dB each on the upper side of the passband. The 
polynomials and corresponding singularities of P 1s 2  F 1s 2  
and E 1s 2  are given in Table 1, and plots of the transfer and 
rejection characteristic are shown in Figure 5

Coupling Matrix Generation
The second step in the synthesis procedure is to calculate 
the values of the coupling elements of a canonical cou-
pling matrix from the transfer and reflection polynomi-
als. Three forms of the canonical matrix are commonly 
used—the folded [16], arrow [25] or transversal [24]. The 
latter is particularly easy to synthesize, and the other two 
may be derived from it quite simply by applying a formal 
series of analytically calculated similarity transforms.

The transversal coupling matrix comprises a series of 
N individual first-degree low pass sections, connected 

Figure 4. Microwave filter design process—synthesis of the polynomials for the transfer and reflection function, synthesis 
of canonical coupling matrix, reconfiguration of coupling matrix, realization in microwave coupled-resonator technology. 
(Reprinted with permission from [22].)
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in parallel between the source and load  terminations 
but not to each other [Figure 6(a)]. The direct source-
load coupling inverter MSL  is included to allow fully 
canonical transfer functions to be realized, according 
to the minimum path rule, i.e., nfzmax , the maximum 
number of finite position TZs that may be realized by 
the network 5  N 2 nmin , where nmin is the number of 
resonator nodes in the shortest route through the cou-
plings of the network between the source and load ter-
minations. In fully canonical networks nmin 5 0 and so 
nfzmax 5 N, the degree of the network.

Each of the N  low-pass sections comprises one par-
allel-connected capacitor Ck  and one frequency invari-
ant susceptance Bk , connected through admittance 
inverters of characteristic admittances MSk and MLk to 
the source and load terminations, respectively. The cir-
cuit of the kth low-pass section is shown in Figure 6(b)

The approach that is employed 
to synthesize the N12 transversal 
coupling matrix is to construct the 
two-port short-circuit admittance 
parameter matrix 3YN 4 for the overall 
network in two ways; the first from 
the coefficients of the rational poly-
nomials of the transfer and reflec-
tion scattering parameters S21 1s 2  and 
S11 1s 2  which represent the character-
istics of the filter to be realized, and 
the second from the circuit elements 
of the transversal array network. By 
equating the 3YN 4 matrices as derived 
by these two methods, the elements 
of the coupling matrix associated 
with the transversal array network 
may be related to the coefficients of 
the S21 1s 2  and S11 1s 2  polynomials.

In [24] it is explained how the 
matrix 3YN 4 is built up very simply 
from the coefficients of the E 1v 2 , F 1v 2
and P 1v 2  polynomials as derived 

in the previous section. From the coefficients, the 
eigenvalues lk and the associated residues r21k and 
r22k , k 5  1, 2, . . . , N of the network may be found using 
partial fraction expansions, whereupon the expression 
for 3YN 4 in terms of the eigenvalues and residues may 
be built up:

 3YN 4   5   j c 0 K`

K` 0
d 1 a

N

k51

1
1s2jlk 2

# cr11k r12 k

r21k r22k
d . (4)

Secondly, the elements of each of the low-pass resona-
tors in Figure 6(b) are cascaded (using ABCD matri-
ces), converting these to the individual y-parameter 
matrices, and then adding them to form the overall 
3YN 4 matrix in terms of the network elements 

 3YN 4   5   j c 0 MSL

MSL 0
d 1 a

N

k51
 

1
1sCk 1 jBk 2

 3 c M2
Sk MSk MLk

MSk MLk M2
Lk

d . (5)

Construction of the N+2 Transversal Matrix
Now the two expressions for 3YN 4, the first in terms 
of the residues r21k and r22k  and the eigenvalues lk, 
which have already been derived from the S21 and S22 
polynomials of the desired filtering function, and the 
second in terms of the circuit elements of the transver-
sal array, may be equated. This leads to the following 
relationships between the residues and the transversal 
coupling matrix elements:

 Ck 5 1  and  Bk 1{  Mkk 2 5 2lk

 MSL 5 K `

 M 2
Lk 5 r22 k  and  MSk MLk 5 r21k.

TABLE 1. 4–2 asymmetric Chebyshev filtering function with two 
prescribed transmission zeros. 

Transfer and Reflection Function Polynomials.

si, i 5 E(s) F(s) P(s)

0 20.1268 2 j2.0658 10.0208 2j2.3899

1 12.4874 2 j3.6255 2j0.5432 13.1299

2 13.6706 2 j2.1950 10.7869 j1.0

3 12.4015 2 j0.7591 2j0.7591

4 11.0 11.0

Corresponding Singularities.
Reflection Zeros 
(Roots of F(s))

Transmission
Zeros (Prescribed)

Transmission/Reflection 
Poles (Roots of E(s))

1 2j0.8593 1j1.3217 20.7437 2 j1.4178

2 2j0.0365 1j1.8082 21.1031 1 j0.1267

3 1j0.6845 j` 20.4571 1 j0.9526

4 1j0.9705 j` 20.0977 1 j1.0976

eR = 1.0 e = 1.1548
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Figure 5. Low-pass prototype transfer and reflection 
characteristics of the 4-2 asymmetric Chebyshev filter, with 
two prescribed transmission zeros at s1 = +j1.3217 and 
s2 = +j1.8082. (Reprinted with permission from [22].)
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Therefore,

 MLk 5"r22k

and 

 MSk 5 r21k/"r22k 5"r11k   k 5 1, 2, c, N (6)

Because the capacitors Ck  of the parallel networks are 
all unity, and the frequency-invariant susceptances Bk  
( 5 2lk, representing the self couplings M11 S  MNN 2 , 
the input couplings MSk , the output couplings MLk , 
and the direct source-load coupling MSL  are all now 
defined, the reciprocal N12 transversal coupling 
matrix M representing the network in Figure 7 may 
now be constructed. MSk  are the N  input couplings, 
and they occupy the first row and column of the matrix 
from positions 1 to N (see Figure 7). Similarly MLk  
are the N output couplings and they occupy the last 
row and column of M from positions 1 to N. All other 
entries are zero.

Similarity Transformation 
and Reconfi guration
The elements of the transversal coupling matrix that 
result from the synthesis procedure may be realized 
directly by the coupling elements of a filter struc-
ture if it is convenient to do so. However, for most 
coupled-resonator technologies, the couplings of 
the transversal matrix are physically impractical or 
impossible to realize. It becomes necessary to recon-
figure the matrix with a sequence of similarity trans-
forms (sometimes called rotations) [25], [26] until a 
more convenient coupling topology is obtained. The 
use of similarity transforms ensures 
that the eigenvalues and eigenvectors 
of the matrix M are preserved, such 
that under analysis the transformed 
matrix will yield exactly the same 
transfer and reflection characteristics 
as the original matrix.

There are several more practical 
canonical forms for the transformed 
coupling matrix M. Two of the better-
known forms are the arrow form [25] 
and the more generally useful folded 
form [23], [27] (Figure 8). Either of 
these canonical forms may be used 
directly if it is convenient to realize 
the couplings, or be used as a start-
ing point for the application of further 
transforms to create an alternative 
resonator intercoupling topology, opti-
mally adapted for the physical and 
electrical constraints of the technology 
with which the filter will eventually be 
realized e.g., [28], [29]. The method for 
reduction of the coupling matrix to the 

folded form will be outlined here. The arrow form 
may be derived using a very similar method [22].

A similarity transform (or rotation) on an N3N 
coupling matrix M0 is carried out by pre- and post-
multiplying M0 by an N3N rotation matrix R and its 
transpose Rt [26]:
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Figure 6. Canonical transversal array. (a) N resonator 
transversal array including direct source-load coupling MSL. 
(b) Equivalent circuit of the kth  low-pass resonator in the 
transversal array. (Reprinted with permission from [22].)

Figure 7. N+2 canonical coupling matrix M for the transversal array. The core 
N3N matrix is indicated within the double lines. The matrix is symmetric about 
the principal diagonal, i.e., Mij = Mji. (Reprinted with permission from [22].)
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 M1 5  R1 # M0 # R1
t , (7 )

where M0 is the original matrix, M1 is the matrix 
after the transform operation, and the rotation 
matrix R is defined as in Figure 9. The pivot 3i, j 4 
1 i 2  j 2  of Rr means that elements Rii 5 Rjj 5  cosur, 
Rji 5 2Rij 5  sinur 1 i, j 2 S or L 2 , and ur is the angle of 
the rotation. The other principal diagonal entries are 5 

1 and all other off-diagonal entries are zero. The trans-
pose Rt  is the same as R except Rij

t
 5 2Rji

t
 5  sinur.

The eigenvalues of the matrix M1 after the trans-
form are the same as those of the original matrix M0, 
which means that an arbitrarily long series of trans-
forms with arbitrarily defined pivots and angles may 
be applied, starting with M0. Each transform in the 
series takes the form

 Mr 5  Rr # Mr21 # Rr
t    r 5  1, 2, 3, c , R, (8)

and, under analysis, the matrix MR resultant at the end 
of the series of transforms will yield exactly the same 
performance as the original matrix M0. With an analyti-
cally calculated angle ur and judiciously chosen pivot 
positions, coupling elements may be zeroed (annihi-
lated) and others created to arrive at a coupling matrix 
whose nonzero entries correspond to the available 
interresonator coupling elements of the filter structure 
it is intended to realize the required transfer and reflec-
tion characteristics with.

By applying a series of rotations, the N12 trans-
versal matrix may be reduced to the folded form. The 
pivots and a formula for calculating the angle of such a 
sequence is given below for a fourth-degree example, 
annihilating the elements MS4, MS3, MS2, M2L , M3L, 
and finally M13 in sequence (see Table 2). The resulting 
folded configuration coupling and routing schematic 
is shown in Figure 8(b).

The final values and positions of the elements in the 
cross diagonals of the folded coupling matrix (the cross 
couplings) are automatically determined—no specific 
action to annihilate couplings within them needs to be 
taken if they are not needed to realize the particular 
transfer function under consideration.

In-Line (Propagating) Confi gurations
Although the folded coupling matrix may be realized 
directly with a microwave structure of some kind, e.g., 
coaxial or dielectric resonators, input/output isola-
tion sometimes becomes a problem, particularly when 
operating the resonator in dual mode, i.e., two orthogo-
nal resonances in the same physical cavity. Here small 
asymmetries in the resonator caused by tuning screws, 
for example, will limit the amount of far-out-of-band 
rejection that the filter can achieve, e.g., to about 25 dB in 
the case of Ku-band dual-mode cylindrical resonators.

For these structures it is usually better to reconfigure 
the folded coupling matrix into an in-line or propagating 
form, where the input and output are at opposite ends of 
the filter structure. In ref [22] some methods are given 
to reconfigure the folded matrix for an even-degree 
symmetric characteristic into an in-line form where the 
values of the coupling elements are symmetric about the 
physical centre of the filter, i.e., the coupling matrix is 
symmetric about both diagonals. However, these meth-
ods sometimes have  restrictions on the pattern of TZs 
that can be realized and so a more general method is 
more often used. This involves a series of rotations, start-
ing with the folded matrix, and with pivots and  rotation 

S 1 2 3 4 L

S 1

1 1

2 cr

3 1

4 cr
sr

–sr

L 1

cr ≡ cosθr , sr ≡ sinθr

Figure 9. Example of fourth degree rotation matrix Rr: 
pivot [2, 4], angle ur.
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L sx ax m sc

Figure 8. N+2 folded canonical network, fourth degree 
example. (a) Coupling matrix: sc and ax couplings are 
generally zero for symmetric characteristics. (b) Coupling 
and routing schematic. Possible nonzero couplings: sc=self-
coupling, m=main-line coupling, ax=asymmetric cross-
coupling, and sx=symmetric cross-coupling. Couplings are 
equivalued about the principal diagonal.
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angles for degrees 6, 8, and 10 as shown 
in Table 3. The sequences for degrees 
12 and 14 may be found in refs. [29], 
[30], and odd degrees may be accom-
modated by using the next-lowest even 
degree, e.g., for a ninth-degree use the 
eighth-degree sequence.

Although the in-line topology of 
the asymmetric in-line realization is 
exactly the same as for the symmet-
ric equivalent, the values of the in-
line coupling matrix, and therefore 
the dimensions of the corresponding 
physical coupling elements, are not 
equal-valued about the physical cen-
tre of the structure [29]. Although this 
means more design effort to develop 
and manufacture a working filter, 
there is an advantage in that there 
are no restrictions on the pattern of 
TZs that the prototype may incorpo-
rate (apart from the usual conditions, 
i.e., the minimum path rule must be 
obeyed, and symmetry of the pattern 
of TZs about the imaginary axis (uni-
tary condition), and about the real 
axis (symmetric characteristics) must 
be preserved). Moreover the compu-
tations required to produce the asym-
metric in-line configuration are less 
complex. Figure 10(a) and (b) shows 
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Figure 10. Eighth-degree network: (a) cross-coupled folded configuration (b) after conversion to in-line topology. (c) Possible 
realization in cylindrical dual-mode cavities. (Reprinted with permission from [22].)

TABLE 2. Fourth-degree example: pivots and angles of the 
similarity transform sequence for the reduction of the 
transversal (or any other) matrix to the folded configuration. 
Total number of transforms R 5  a

N21

n51
n 5 6.

Transform 
Number r

Pivot 
[i, j]

Element to 
be Annihilated 
in Matrix M0

ur 5 tan21 1cMkl /Mmn 2
k l m n c

1 [3, 4] MS4 in row S S 4 S 3 –1

2 [2, 3] MS3 “ S 3 S 2 –1

3 [1, 2] MS2 “ S 2 S 1 –1

4 [2, 3] M2L in column L 2 L 3 L +1

5 [3, 4] M3L “ 3 L 4 L +1

6 [2, 3] M13 in row 1 1 3 1 2 –1

Table 3. Pivot positions and rotation angles for the general 
asymmetric in-line realization, for degrees 6, 8, and 10.

Degree
N

Rotation 
No. r

Pivot
[i, j ]

ur 5 tan21 1cMkl /Mmn 2
k l m n c

6 1 [2, 4] 2 5 4 5 +1

8

1
2
3
4

[4, 6]
[2, 4]
[3, 5]
[5, 7]

3
2
2
4

6
7
5
7

3
4
2
4

4
7
3
5

–1
+1
–1
–1

10
1
2
3

[4, 6]
[6, 8]
[7, 9]

4
3
6

7
8
9

6
3
6

7
6
7

+1
–1
–1
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the reconfiguration of the coupling/routing diagram 
for an eight–four characteristic in folded form to an in-
line form, and Figure 10(c) illustrates a possible realiza-
tion in cylindrical dual-mode cavities.

Pfi tzenmaier Confi gurations
Another configuration that is able to avoid the input/
output isolation problem associated with the folded 
configuration in a dual-mode structure was intro-
duced by Pfitzenmaier [31] for sixth-degree symmet-
ric filtering characteristics. In [31] it is shown that the 
synthesized sixth-degree circuit can be transformed 
(not using coupling matrix methods) to a topology 
where the input and output resonances (1 and 6) are 
in adjacent cavities of the dual-mode structure, thereby 
avoiding the isolation problem. Furthermore, because 
it is possible to directly cross-couple resonances 1 and 
6, the signal only has two resonances to pass through 
between the input and output, and therefore by the 

minimum path rule, the Pfitzenmaier configuration is 
able to realize N 2 2 TZs, the same as the folded struc-
ture. The coupling and routing diagram for a sixth-
degree example is shown in Figure 11.

The Pfitzenmaier configuration may be easily 
obtained for any even degree symmetric characteris-
tic $ 6 by using a sequence of coupling matrix rota-
tions [28]. Unlike the asymmetric in-line realization, 
the pivots and angles of the rotations in the sequence 
may be defined with simple equations. Starting with 
the folded matrix, a series of R 5 1N 2 4 2 /2 rotations is 
applied according to (9) after which the Pfitzenmaier 
configuration is obtained.

For the rth rotation, pivot 5 3i, j 4 and associated 
angle 5 ur , where:

 
i 5 r 1 1
j 5 N 2 i

ur 5 tan21 12Mi,N2r/Mj,N2r 2
S  r 5 1, 2, 3, c, R (9)

and N is the degree of the filter (N 5 even integer $ 6 2 .
Advanced Configurations
In this section some advanced coupling matrix con-
figurations will be considered. The first is the cul-de-
sac configuration, which is derived from the folded 
coupling matrix, and has the principal advantage that 
it needs no diagonal cross couplings even if realizing 
asymmetric characteristics. The second is the cascaded 
trisection configuration which is derived from the 
arrow canonical matrix. This has applications for the 
generation of cascaded n-tuplets and box filters

The Cul-de-Sac Confi guration
The cul-de-sac configuration [24], [32] in its basic form 
is restricted to double-terminated networks and will 
realize a maximum of N 2 3 TZs. Otherwise it will 
accommodate any even- or odd-degree symmetric or 
asymmetric prototype. Moreover its form lends itself to 
a certain amount of flexibility in the physical layout of 
its resonators.

A typical cul-de-sac configuration is shown in 
Figure 12(a) for a tenth-degree prototype which will 
accommodate a maximum of seven TZs. There is a cen-
tral core of a quartet of resonators in a square forma-
tion [1, 2, 9, and 10 in Figure 12(a)], straight-coupled to 
each other (i.e., no diagonal cross-couplings). One of 
these couplings is always negative; the choice of which 
one is arbitrary. The entry to and exit from the core 
quartet are from opposite corners of the square [1 and 
10, respectively, in Figure 12(a)].

Some or all of the rest of the resonators are strung 
out in cascade from the other two corners of the core 
quartet in equal numbers (even-degree prototypes) or 
one more than the other (odd degree prototypes). The 
last resonator in each of the two chains has no output 
coupling, hence the nomenclature cul-de-sac for this 
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Figure 12. Cul-de-Sac network configurations: 
(a) tenth degree (7 TZs max) and (b) seventh degree 
(4 TZs max) [24].
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Figure 11. Pfitzenmaier configuration—6-4 symmetric 
filtering characteristic. (a) Original folded configuration. 
(b) After transformation to Pfitzenmaier configuration. 
(Reprinted with permission from [22].)

For most coupled-resonator 
technologies, the couplings of the 
transversal matrix are physically 
impractical or impossible to realize.
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configuration. An example of an odd degree character-
istic is shown in Figure 12(b) (seventh-degree).

To transform the folded coupling matrix to the cul-
de-sac form, a series of rotations is applied according 
to the following procedure: 

For N even and r 5  1, 2, 3, . . . , 1N22 2 /2:
 For rotation # r :

  Pivot of rth  rotation 5 3i, j 4 where 
i 5  1N 1 2 2 /2 2 r  and j 5  N/2 1  r 

  Angle = ur 5
1
2

 tan21a 2 Mij

1Mjj 2 Mii 2b (cross-pivot 
 rotation)  (10a)

For N odd and r 5 1, 2, 3, . . . , 1N 2 3 2 /2
 For rotation # r:

  Pivot of rth rotation 5 3i, j 4 where i51N 1 1 2 /22r 
and j 5 1N 1 1 2 /2 1 r 

 Angle = ur 5  tan21 1Mi, j21 /Mj21,j 2  (10b)

 For example, for a seventh-degree filtering function 
with three TZs:
Number of rotations = 2
  Rotation 1: i 5 3  j 5 5, therefore pivot 1 = [3, 5] and 

angle u1 5 tan21 1M34 /M45 2
  Rotation 2: i 5 2  j 5 6, therefore pivot 2 = [2, 6] and 

angle u2 5 tan21 1M25/M56 2
Figure 13 shows a realization in coaxial resonator tech-
nology, firstly configured in folded form (a) and after 
reconfiguration to the cul-de-sac form (b). In the cul-
de-sac form all the couplings will of the same sign except 
for one in the central core quar-
tet—which one is arbitrary. 
Also for this case where the 
number of TZs is less than 
the maximum permissible, all 
the couplings between resona-
tors in the core quartet have the 
same absolute value.

Alternative Cul-de-Sac 
Confi gurations
In some cases it may give a 
more convenient configura-
tion and better input-output 
isolation if the final rotation 
in the sequence is omitted. 
Such an example is shown 
in Figure 14(a) for an eighth-
degree example, which gives a 
convenient rectangular topol-
ogy and at least five resona-
tors between input and output 
as compared with the basic 
cul-de-sac. It should be noted 

however that this topology will realize two fewer TZs 
than the basic version.

If the sequence is continued on for one further rota-
tion than the basic sequence, the input and output cou-
plings will be included in the core quartet as shown 
in Figure 14(b) for the eighth-degree example. This 
will realize two more TZs than the basic cul-de-sac 
(i.e., seven for this eighth-degree prototype), but if it is 
convenient to include the source-load coupling MSL as 
shown in Figure 14(b), then all eight TZs may be real-
ized (fully canonical network). If the original prototype 

Figure 13. 7-1-2 asymmetric filter example—coaxial cavity 
realizations: (a) folded network configuration and (b) cul- 
de-sac configuration. (Reprinted with permission from [22].)
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characteristic is fully canonical and MSL is present in the 
original folded matrix, its value or position will not be 
changed by the cul-de-sac rotation sequence.

If an extra unity coupling inverter is added at each of 
the input and output ports so creating an N14 matrix 
(the additional inverters will have no effect on S11 and 
S21 except to change their phases by 180°), and then the 
sequence is continued for yet another rotation, a situa-
tion arises where all four nodes in the core quartet are 
nonresonant, as shown in Figure 14(c). The values of the 
couplings in the core quartet will be 1/"2, and together 
with the negative sign it becomes evident that the core 
is a rat-race coupler. This is easily realized in microstrip 
where the negative branch is realized with a 270° length 
of line instead of 90°. Also, the two branches of the net-
work will have become the even mode and odd mode 
networks of the filtering function [30], [32], all synthe-
sized quite automatically by the cul-de-sac procedure.

There are many advantages to be gained by using 
the cul-de-sac configuration, e.g., minimal number 
of couplings, no diagonal couplings even with asym-
metric characteristics, convenient and flexible (even 

3-D) layout possibilities. However the simple topology 
tends to produce a rather sensitive device in practice.

Bandstop Filters
To generate a bandstop characteristic from the regular 
low-pass prototype polynomials it is only necessary to 
exchange the reflection and transfer functions (includ-
ing the constants) [22]:

 S11 1s 2 5
P 1s 2 /e
E 1s 2    S21 1s 2 5

F 1s 2 /eR

E 1s 2  . (11)

Since S21 1s 2  and S11 1s 2  share a common denominator 
polynomial E 1s 2 , the unitary conditions for a passive 
lossless network are preserved. If the characteristics 
are Chebyshev, then the original prescribed equiripple 
return loss characteristic becomes the transfer response, 
with a minimum reject level equal to the original pre-
scribed return loss level. Because the degree of the new 
numerator polynomial for S21 1s2  15 F 1s 2 /eR 2  is now 
the same as its denominator E 1s 2 , the network that is 
synthesized will be fully canonical. The new numera-
tor of S11 1s 2  is the original transfer function numerator 
polynomial P 1s 2 /e and may have any number nfz of pre-
scribed TZs provided nfz # N, the degree of the charac-
teristic. If nfz , N , then the constant eR 5  1.

The network synthesis methods that have already 
been described may be used, once the S21 1s 2  and S11 1s 2  
functions have been exchanged, to create a bandpass-like 
filter configuration but giving bandstop filter character-
istics. The resonant cavities are direct-coupled so wide-
band performance is potentially better, and because the 
cavities are tuned to frequencies within the stopband, the 
main signal power will mainly route through the direct 
input-output coupling, bypassing the resonators and 
giving minimal insertion loss and relatively high power 
handling. An example of a fourth-degree bandstop filter 
realizing two symmetric reflection zeros (formerly TZs) 
is shown in Figure 15. If the original characteristic is to 
be asymmetric, then extra diagonal cross- couplings will 
be necessary, e.g., M13.

Cul-de-Sac Forms for the 
Direct-Coupled Bandstop Matrix
If the number of reflection zeros of the bandstop charac-
teristic is less than the degree of the network 1nfz , N as 
above), and the network is double-terminated between 
equal source and load terminations, then a cul-de-
sac form for the bandstop network, similar to that 
for bandpass filters, may be obtained by introducing 
two unity-impedance 45° phase lengths at either end 
of the network. This is equivalent to  multiplying the 
F 1s 2 , F22 1s 2  and P 1s 2  polynomials by j,  which has no 
effect on the overall transfer and reflection responses of 
the network apart from the 90° phase changes.

Synthesizing the network using the same methods 
as for a folded bandpass filter yields networks such as 
shown in Figure 16. These networks are characterized by 
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Figure 16. Cul-de-sac forms for direct-coupled bandstop 
filters: (a) sixth degree and (b) seventh degree. (Reprinted 
with permission from [22].)

Figure 15. 4-2 Direct-coupled bandstop filter: (a) coupling 
and routing diagram and (b) possible realization with 
coaxial cavities. (Reprinted with permission from [22].)
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the square-shaped core quartet 
of couplings, with the source 
and load terminals at adjacent 
corners at the input/output 
end, while the other resonators 
are strung out in two chains 
from the other two corners, in 
equal numbers if N  is even 
and one more than the other 
if N  is odd. There are no diago-
nal couplings even for asym-
metric characteristics, and all 
couplings are of the same sign. 
For these  characteristics where 
nfz ,  N , the direct source-
load coupling MSL  will always 
be unity in value.  Figure 16 
shows the coupling and rout-
ing diagrams of sixth- and 
seventh-degree examples.

Realization becomes partic-
ularly simple for this form of 
bandstop filter; an example of 
a four-two asymmetric band-
stop filter is shown in Figure 
17. This is the same low-pass 
prototype that was given as an 
example for a bandpass filter above, but note that the 
S21 and S11characteristics have exchanged such that the 
in-band equiripple insertion loss is 22 dB (formerly the 
in-band equiripple return loss level for this prototype), 
and the out-of-stopband return loss lobe level is 30 dB 
on the upper side (formerly the rejection lobe level).

The bandstop filter may also be synthesized as the 
even mode and odd mode networks of the low-pass 
prototype attached to the branches of a coupler. It can be 
shown [32] that if the coupler network is configured as a 
3 dB hybrid coupler, instead of a rat race coupler as for the 
bandpass filter, then the bandstop equivalent response 
will be obtained (i.e., the S21 and S11 responses exchange). 
The procedure is simply to first generate the N14 rat-
race- coupled bandpass cul-de-sac coupling matrix as 
described above and then to replace the elements of the 
rat-race coupler with those of the 3 dB hybrid coupler 
as shown in  Figure 18, i.e., MS,L 5  MN1,N2 5  1, MS,N1 5
 MN2,L 5  "2. There is no need to change the values of the 
even-mode and odd-mode networks. Again this configu-
ration is particularly suitable for realization in a planar 
technology, e.g., microstrip [30].

Trisections
A trisection comprises three couplings between three 
sequentially numbered nodes of a network, the first 
and third of which may be source or load terminals, 
or it might be embedded within the coupling matrix 
of a higher-degree network [34]–[36]. The minimum 
path rule indicates that trisections are able to realize 

one TZ each. As will be shown later, trisections may 
be merged using rotations to form higher order sec-
tions e.g., a quartet capable of realizing two TZs may 
be formed by merging two trisections.

Figure 19 shows four possible configurations. Fig-
ure 19(a) is an internal trisection, while Figure 19(b) 
and (c) shows input and output trisections respec-
tively, where one node is the source or load termina-
tion. When the first and third nodes are the source and 
load terminations respectively [Figure 19(d)], we have 
a canonical network of degree 1 with the direct source-
load coupling MSL  providing the single TZ. Trisections 
may also be cascaded with other trisections, either sep-
arately or conjoined [Figure 19(e) and (f)].

Being able to realize just one TZ each, the trisection is 
very useful for the synthesis of filters with asymmetric 
characteristics. They may exist singly within a network 
or multiply as a cascade. Rotations may be applied to 
 reposition them along the diagonal of the overall  coupling 
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matrix, or to merge them to create quartet sections (two 
trisections) or quintet sections (three trisections), etc. 
Following on below an efficient procedure for synthe-
sizing a cascade of trisections will be outlined [37].

Synthesis of the Arrow 
Canonical Coupling Matrix
The folded cross-coupled circuit and its corresponding 
coupling matrix was introduced above as one of the 
basic canonical forms of the coupling matrix, capable 
of realizing N  TZs in an Nth-degree network. A second 
form was introduced by Bell [25] in 1982, which later 
become known as the wheel or arrow form. As with the 
folded form, all the main-line couplings are present, 
and in addition the source terminal and each resonator 
node is cross-coupled to the load terminal.

Figure 20(a) gives an example of the coupling and 
routing diagram for a fifth-degree fully canonical fil-
tering circuit, showing clearly why this configuration 
is referred to as the wheel, with the main-line cou-
plings forming the (partially incomplete) rim and the 
cross-couplings and input/output coupling forming 
the spokes. Figure 20(b) shows the corresponding cou-
pling matrix where the cross-coupling elements are all 
in the last row and column, and together with the main 
line and self couplings on the main diagonals, give the 
matrix the appearance of an arrow pointing downwards 
towards the lower right corner of the matrix. The arrow 
matrix may be synthesized from the canonical transver-
sal matrix with a formal sequence of rotations, similar to 
that for the folded matrix [22].

The basis of the trisection synthesis procedure relies 
on the fact that the value of 
the determinant of the self and 
mutual couplings of the trisec-
tion evaluated at v 5 v0, the 
position of the TZ associated 
with the trisection, is zero:

 det ` Mk21, k Mk21, k11

 v0 1 Mk, k Mk, k11
` 5 0

 (12)

where k  is the number of the 
middle resonator of the tri-
section.

Figure 21 gives the topology 
and coupling matrix for the 
fourth-degree filter with 22 dB 
return loss and two TZs at 
v01 5  1.8082 and v02 5  1.3217
that was used as an example 
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earlier, now configured with two trisections to realize 
the two TZs. The shaded areas in the matrix indicate 
the couplings associated with each trisection.

Once the arrow coupling matrix has been formed, 
the procedure to create the first trisection realizing 
the first TZ at v 5 v01 begins with conditioning the 
matrix with the application of a rotation at pivot 
3N21,  N 4 and an angle u01 to the original arrow 
matrix M102.

The rotation angle u01 is given by (13):

 u01 5 tan21 c MN21, N
102

v01 1 MN,  N
102 d  (13)

where the superfix (0) indicates that the coupling 
values are taken from the original arrow matrix M102. 
The trisection may then be pulled up the diagonal 
of the matrix with further rotations such as pivot 
3N22, N21 4 and angle u12 5 tan21 1MN22, N

112 /MN21, N
112 2  

until it is in its desired position. The procedure is illus-
trated in Figure 22 for an asymmetric eighth degree 
example with four TZs.

Now the process may be repeated for the second 
trisection at v 5 v02, and so on until a cascade of trisec-
tions is formed, one for each of the TZs in the original 
prototype, as shown in Figure 23(a). The trisections 
may be realized directly if it is convenient to do so, e.g., 
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Figure 21. Fourth-degree filter with two transmission zeros realized as trisections. (a) Coupling/routing diagram. 
(b) Coupling matrix. (Reprinted with permission from [22].)

Figure 22. 8-2-2 synthesis example. (a) Coupling and 
routing diagram of initial arrow coupling matrix. (b) 
Conditioning rotation creates first trisection 6-7-8. (c) 
Rotation 2 pulls the trisection to position 5-6-7 . . . etc. 
(d) Rotation 7 finally creates trisection S-1-2. Note that 
when the trisection is in its final position, the outer cross 
coupling of the arrow formation (M4L) automatically 
disappears. (Reprinted with permission from [22].)
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Figure 23. 8-4 asymmetric filter. (a) Trisection cascade. 
(b) Merging of trisections. (c) Coaxial resonator realization. 
Trisections S-1-2 and 2-3-4 merged to form quartet 1-2-3-4. 
Trisections 4-5-6 and 6-7-8 merged to form quartet 5-6-7-8. 
(Reprinted with permission from [22].)
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coupled coaxial resonators, but for other technologies 
such as dual-mode waveguide a cascade of quartets 
may be more suitable. This is easily achieved by merg-
ing adjacent trisections, as illustrated in Figure 23(b). If 

the two trisections being merged are realizing TZ pairs 
symmetrically located on the real or imaginary axes, 
or in quartets with symmetry about both axes, then 
the diagonal couplings [M24 and M57 in Figure 23(b)] 
will be zero. It is essential that complex zeros are in 
paraconjugate pairs, otherwise unrealizable complex 
coupling values will result. Figure 23(c) shows a pos-
sible coaxial-resonator realization for the two quartets.

This procedure may be extended to form even 
higher order sections in cascade, for example three tri-
sections may be merged to form a quintet section, as 
illustrated in Figure 24.

Dual Band Symmetric Filter
An interesting configuration possibility arises if there 
are an odd number of TZs in a symmetric charac-
teristic. For a single band filter this is anachronistic, 
since symmetry implies even numbers of TZs equally 
distributed above and below the passband. How-
ever a possibility arises with symmetric dual band 
filters, where one or more of the zeros is at zero fre-
quency. Dual band filters have been finding applica-
tion recently for suppressing interference between two 
closely spaced channels, for example.
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Figure 24. Transformation of three conjoined trisections to form 
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merged to form quintet. (Reprinted with permission from [22].)
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A case is taken of a symmetric dual-band proto-
type where the lower band lies between v 5 21.0 and
20.35, the upper band between v 5 10.35 and 11.0, 
two TZs are positioned on the outer sides of the two 
bands producing rejection lobes of 30 dB, and three 
between the bands (one at v 5 0) producing lobes of 
20 dB. The in-band return loss level is 22 dB.

If the network is synthesized as a series of trisec-
tions, and the complementary pairs combined to form 
two symmetric quartets, the remaining trisection 5-6-7 
realizing the TZ at zero will have one of its main-line 
couplings missing, M67 in this case. Figure 25 shows 
the synthesized coupling matrix with the extracted 
zero resonator in the centre, although it does not neces-
sarily have to be in that position. If there is more than 
one TZ at zero frequency, they too may be synthesized 
as extracted zeros.

Box and Extended Box Sections
The trisection may also be used to create another class 
of configuration known as the box or extended box 
class [33]. The box section is similar to the cascade 
quartet section, i.e., four resonator nodes arranged in 
a square formation; however with the input to and the 
output from the quartet from opposite corners of the 
square. Figure 26(a) shows the conventional quartet 
arrangement for a fourth degree filtering characteris-
tic with a single TZ, realized with a trisection. Fig -
ure 26(b) shows the equivalent box section realizing 
the same TZ but without the need for the diagonal cou-
pling. Application of the minimum path rule indicates 
that the box section can realize only a single TZ.

The box section is created by the application of a 
cross-pivot rotation (as used with cul-de-sac filter syn-
thesis) to a trisection that has been synthesized within 
the overall coupling matrix for the filter. To transform 
the trisection into a basic box section, the rotation pivot 
is set to annihilate the second main line coupling of the 

trisection in the coupling matrix, i.e., pivot = [2, 3] anni-
hilating element M23 [cross-pivot rotation, see (10a)] 
in the trisection 1-2-3 in the fourth degree example of 
Figure 26(a) and its equivalent coupling and routing 
schematic Figure 27(a). In the process of annihilating 
the main line coupling M23, the coupling M24 is created 
[Figure 27(b)], and then by untwisting the network the 
box section is formed [Figure 27(c)].

In the resultant box section, one of the couplings 
will always be negative, irrespective of the sign of the 
cross-coupling 1M13 2  in the original trisection. Figure 
28(a) gives the coupling and routing diagram for a 
tenth degree example with two TZs realized as trisec-
tions and where each trisection has been transformed 
into a box section within the matrix by the application 
of two cross-pivot rotations at pivots [2, 3] and [8, 9] 
[Figure 28(b)]. Having no diagonal couplings, this form 
is suitable for realization in dual-mode technology.

An interesting feature of the box section is that 
to create the complementary response (i.e., the  TZ 
appears on the opposite side of the passband), it is only 
necessary to change the values of the self couplings to 
their conjugate values. In practice this is a process of 
retuning the resonators of the RF device—no couplings 
need to be changed in value or sign. This means that 
the same physical structure may be used for the filters 
of a complementary diplexer, for example.
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Figure 26. 4-1 asymmetric filtering function. (a) Realized with conventional diagonal cross coupling (M13). (b) Realized 
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Extended Box Sections
The basic box section may be extended to enable a 
greater number of TZs to be realized, but retaining 
a convenient physical arrangement, as shown in Fig-
ure 29 [33]. Here the basic fourth degree box section 
is shown and then the addition of pairs of resona-
tors to form sixth, eighth and tenth degree networks. 
Application of the minimum path rule indicates 
that a maximum of 1, 2, 3, 4, . . . , 1N22 2 /2 TZs may 
be realized by the 4th , 6th, 8th, 10th, . . . , Nth-degree 
networks respectively. The resonators are arranged 
in two parallel rows with half the total number of 
resonators in each row, input is at the corner at one 
end and output from the diagonally opposite corner 
at the other end. Even though asymmetric character-
istics may be prescribed, there are no diagonal cross-
couplings.

There appears to be no regular pattern for deter-
mining the sequence of rotations to synthesize the 
coupling matrix for the extended box sections from the 
folded network or any other canonical network. The 
networks may be synthesized using optimization tech-
niques [22], [38], [39], but more recently a procedure 

[40] based on the use of the Groebner basis to solve 
nonlinear equations has become available through the 
software package Dedale-HF, which is accessible on 
the Internet [41].

An interesting feature of extended box filters is that 
multiple solutions for the coupling matrices exist for 
the same prototype filtering characteristic. This means 
that optimal coupling matrix values may be chosen for 
the RF technology it is intended to realize the extended 
box filter with. The number of real solutions depends 
on the degree and TZ pattern of the filtering function, 
e.g., 16 for an eighth degree and 58 for a tenth degree 
characteristic. The multiple solution feature however 
can cause a problem when trying to de-embed cou-
pling values from a measured performance.

Conclusions
In this article, some of the more recent developments 
in the art of filter synthesis have been outlined. These 
have been mainly based on the coupling matrix 
 representation of the filter’s coupling arrangements, 
because of the amenity of the coupling matrix to math-
ematical manipulation, and the one-to-one correspon-
dence of the elements of the coupling matrix to the real 
filter parameters.

The methods described in this article probably do 
not cover all those available today for filter network 
synthesis. It is known that some advanced research 
work is ongoing into the synthesis of lossy filters [42]–
[47] which are used to compensate for a low resona-
tor Q and give very linear in-band performance but 
at the expense of a high-ish insertion loss (not a real 
problem in low-power circuits). Also, some work is 
ongoing into the synthesis of coupling matrices for 
wideband devices, where the coupling elements have 
a frequency dependency [48]. Some novel synthe-
sis techniques have recently come available for the 
design of circuits incorporating the nonresonant node 
(NRN) element, which are useful in high power appli-
cations and for easing the design of dielectric and pla-
nar circuits [49]–[51].

The Dedale-HF CAD pack-
age mentioned above for cre-
ating extended box solutions 
may also be used to solve 
other topological cases which 
are not amenable to a series 
of analytical transforma-
tions, and which can only be 
solved with an optimization 
approach. Another CAD opti-
mization procedure known 
as space mapping has also 
become available recently, and 
has been widely used for the 
design of complex filters and 
multiplexers [52].

4

3

2

1S

L 3

4

2

1S

L6

5
(a) (b)

3

4

2

1S

L8

7

6

5

3

4

2

1S

L7

8

6

5

10

9
(c) (d)

Figure 29. Coupling and routing diagrams for extended box section networks. (a) fourth-
degree (basic box section). (b) sixth-degree. (c) eighth-degree. (d) tenth-degree.
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