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Microwave Breakdown in Resonators and Filters

D. Anderson, U. Jordan, M. Lisak, T. OlssoRssociate Member, IEEERNd M. Ahlander

Abstract—Several aspects of microwave breakdown in res- the global breakdown condition is investigated. In this paper,
onators are discussed in this paper. Approximate analytical we will discuss several aspects of microwave breakdown with
criteria are formulated for the critical microwave breakdown field emphasis on the problem of breakdown in the inhomogeneous

in some illustrative model geometries, which clearly brings out . . . .
the main physical properties of microwave-induced breakdown Microwave fields determined by a resonator or filter geometry.

in the presence of inhomogeneous electric fields. The analytical First, we will consider microwave breakdown in a cylin-
results are verified by comparisons with numerical calculations. A drical resonator where the inhomogeneous electric field gives
full numerical solution procedure for determining the microwave rise to a Strong|y inhomogeneous ionization. We ana|yze this
breakdown field in commercially available resonator designs is qplem using an approximate analytical variational approach,
also presented. The numerical predictions are compared with which has the advantage of giving very simple and explicit
experimental results, demonstrating very good agreement in the ! i o
pressure range available for the experiments. The success oféxpressions for the predicted breakdown electric fields and
the predictions of the breakdown threshold suggests methods also gives a clear picture of the physics involved in the
complementary to high-power pulse testing of radio-frequency preakdown process. For more complicated geometries, the
filters. usefulness of analytical approximations become limited and
Index Terms—Microwave breakdown, microwave filters, mi- resort must be taken to numerical means. We illustrate this
crowave resonators. by a direct numerical determination of the breakdown field
in a realistic microwave resonator. The numerical predictions
|. INTRODUCTION are related to the analyti.cal understanding obtained and are
) _ also compared with experimental results. Very good agreement
M ICROWAVE breakdown in gases under various physsenyveen theory and experiments is demonstrated.
ical and technical conditions is a well-known and rinayy we use the obtained results to suggest a procedure
much-studied problem. A classical summary of relevant resul nreicting and testing microwave breakdown in resonators
is given in [1]. However, the technical development of Miggeq e g. in antenna feed systems for mobile telephone
crowave generators as well as of microwave devices contingg, munication. These resonators conventionally operate at or
to give rise to new situations and parameter regimes Whejg,r atmospheric pressures and a realistic test of their critical
microwave breakdown plays an important role and whefgeakdown strength is sometimes expensive and cumbersome
previous results on breakdown are not directly applicable. 1, herform due to the high powers needed. On the other hand,
One example of this is the recent development of microwayge preakdown threshold decreases with decreasing pressure,
pulse generators, which are now capable of delivering Vefy,s making it easier to perform a breakdown test at lower
short and very intensive pulses for which classical breakdo"ﬁ?essures. We have shown that by performing breakdown
theory has to be properly generalized [2]. Another example iSeasyrements at low powers, a reliable extrapolation of these
provided by the trend to design microwave devices as smal ;s to atmospheric pressures can be made based on the
and compact (and low cost) as possible. This developmepimerically obtained curve for the breakdown strength as a
leads to concern about the concomitant breakdown strengificfion of gas pressure. The analytical considerations show
of the construction, in particular, in situations involving more, 4+ preakdown due to diffusion at lower pressures can be
complicated geometries, such as in microwave resonators i acterized by an effective diffusion length, which, however,
filters. , _ , , _depends on the complicated geometry and, in practice, can
_In many microwave devices, the geometrical configuratiqf\y he determined numerically. As the pressure is increased,
gives rise to local strongly enhanced microwave fields. Sugleakdown becomes controlled by a combination of diffusion
regions are potentially dangerous from the point-of-view Qfyy attachment losses, the relative ratio between these factors
breakdown since the field here may be much stronger thafing determined by the numerically obtained result. We hope
the globally predicted breakdown field. On the other hang,4: this method proves a useful tool for easy tests of the

a locally overcritical field does not necessarily imply globgleakdown strength of various gas-filled microwave devices
breakdown. Several model examples of this situation Afforking at atmospheric pressures.

considered and the influence of local field enhancement on
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accelerated to high energies by the microwave field. Tlsérength. A commonly used approximation for the ionization
evolution of the free electron density(z, ¢) is governed by frequency is
the continuity equation [1] E

8
8 v; = v (B) = y; <—> (8)
T ov. (DVn) +1;n — vgn (1) (&) "\ Eo

ot where Fy is a normalizing electric field and;, is the

where D is the diffusion coefficienty; Is the ionization ionization frequency corresponding to that field. The parameter
frequency, andy, is the attachment frequency of the free 9 Y P g ' P

electrons on neutral molecules. /3 depends on the gas, but typically for @r= 5.33.

. L Since the electric field has an inhomogeneous mode
A heuristic way of deriving the breakdown threshold CONicture  determined  separately by the  electrodvnamic
dition is to introduce the effective density scale lendtly P y by y

as (undisturbed) equations for the microwave field, the ion-
ization frequency appearing in (1) is, in realistic situations,
inhomogeneous, i.ey; = v;(z). Although this generalization
complicates the detailed analysis of the breakdown problem, it
does not imply a conceptually different situation as compared
This simplified analysis makes it possible to rewrite (1) ag the homogeneous case. The full diffusion equation can now

V-(Vn)=—-———n. 2

an be written
a = VhpetN (3) aTL
where Frie V- (DVn) + (vi(z) — vo)n. 9)
Generalizing our previous heuristic approach, we can again
Vnet = Vi —VD — Va (4) introduce an effective density scale length and approximate
9) as
andvp = D/L%; is an effective diffusion frequency corre—( ) on Dn
sponding to the density scale lengthg. From (3), we infer o N7 + (max v; — vy )n (20)
eff

that the electron density will grow exponentially whep, >0, ) o
which defines the breakdown threshold as where max 1, denotes the maximum of the ionization fre-

guency over the volume occupied by the microwave field. The
Vney = 0. (3)  breakdown threshold condition clearly becomes

The weak point in this approach is that there is no easy
way to predict the crucial parametér;, which determines o .
the density scale length and the concomitant diffusion loss¥d1€re vp is still defined by (2). _
Qualitatively, we expecL.z to be determined by the shortest 1he characteristic scale length.g is now even more
diffusion distance in the system, i.e., essentially by half tﬁgmcul_t to determine accurate_ly than in the homogeneous case
geometrical dimension of the waveguide, resonator, etc. Since it depends on the spatial mode structure of the electric

However, such crude estimates are generally not enougHifld (which is given) in addition to the dependence on the
order to determind..; and an accurate determination involveSPatial mode structure of the electron density. The rigorous
solving the eigenvalue problem obtained from (1) in the “mﬁmal_yss for dete_rmlnlng th_e breakdown threshold involves
case wherdn/dt = 0, which reads solving the following new eigenvalue problem:

Vpet =MaX 1; — Vp — Vg =0 (11)

V24 Vi Ya g Vn 4+ As(z)n =0
D and
and
n(OV) =0 ) n(OV) =0 (12)
wheredV denotes the boundary of the regibhoccupied by Where A = [max vi(z) — vo]/D; s(x) = (vi(z) -

the microwave electric field. Obviously, with; —v,)/D = A, Va)/[maxvi(x) — 1]. It is obvious from (12) that
(6) becomes a classical eigenvalue problem. From the solutiftf €igenvalue will now also be affected by the field

we can now defind..q rigorously from (6) as inhomogeneity through the normalization form factefr)
’ V25, and that the density scale length dependscdn contrast to
Li=———=\ (7) the simpler case investigated earlier.
n

Nevertheless, having found the eigenvalueby solving
TZ), the breakdown condition (11) can be usegosteriori
to infer the proper effective scale length through the relation

We emphasize the fact that, in this case, the effecti
density scale length..g; is determined by the geometry of
the configuration only. y

A further complication of the problem of determining accu- 2=_V n(0) _ \ = Hax Vi T Va (13)
rate breakdown thresholds is due to the fact that although the o n(0) D
diffusion coefficient and attachment frequency depend rathehere, for simplicity, we have assumed thaix »; = 1,(0).
weakly on the strength of the microwave electric figl/l Obviously, (13) is equivalent to the heuristic breakdown
and, consequently, can be considered as constants, the @mdition, which includes a diffusion frequency determined

ization frequency increases rapidly for increasing electric-fiely the effective scale length.q.
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However, the inhomogeneous eigenvalue problem given Bhe trial function is inserted into the variational integral, which
(12) is difficult to solve analytically for geometries of practicatan then be integrated overto give the reduced Lagrangian
interest and a resort must then be taken to either approximéié according to
analytical techniques or to numerical means. In this study,
we will demonstrate both possibilities although, admittedly, (L) E/ L(n(x) = ng(z; p1, p2, ---) da:). (16)
in complicated geometries, a humerical approach is the only v
possible way to determine the breakdown threshold. HoweverObviously,(L) is an algebraic function of the parametgrs
we will also show that the concept of an effective scale lengtbnly and the variational equations now reduce to the algebraic
which determines the diffusion losses, can be used in a semiaqguations
alytical way in combination with experiments to make accurate a(L)
predictions for the breakdown threshold over a large range of 0. = 0, 7=12 - a7
pressures. The basic idea here is to determine the characteristic Pj
length L.g by low-pressure breakdown experiments and thewhich, together with the trivial relatiofL) = 0, determine
to extrapolate the analytical breakdown expression to highte constant; and, more importantly, the eigenvalue
pressures using the experimentally determined scale length. The integration and subsequent optimization may, in prin-

ciple, be done analytically, semianalytically, or numerically.
IIl. APPROXIMATE ANALYSIS BASED ON DIRECT However, it is obvious that a completely analytical analysis
VARIATIONAL METHODS requires a careful choice of trial functions and a not too

. . . complicated geometry, whereas a semianalytical or completel
A convenient approach for approximate analysis of tq? P g y y P y

. S o umerical analysis makes it possible to investigate more com-
eigenvalue problem (12) is direct variational methods based 8Iri1cated problems. In this study, we will give an illustrative

trial functions and subsequent Raleigh—Ritz optimization. Th onstration of the usefulness of the variational approach

: e
approa_lch ha_s been_ used sqccessfully (both analytically a,’;{‘hcgqthe implications for determining the effective scale length
numerically) in previous studies of breakdown problems. E 7

stein, who applied the approach to several simple cases wh%erethe problem.
alternative exact solutions were available, made one of the first
applications to situations involving spatially varying fields [3].
Approximate, but explicit analytical solutions were obtained
and shown to be in very good agreement with the exact so-As an illustration of the variational approach, we will
lutions. He also demonstrated semianalytical examples whemnsider breakdown in a hollow cylindrical waveguide of
the first step of the analysis could be performed analyticallsgadius # and height for a microwave field excited in
but where the second optimization step, although conceptudiig TM,;, mode, where the electric field can be written as
simple, became algebraically tedious and was most convg= EyJo(jor/R). The eigenvalue problem for the electron
niently performed numerically. The approach was later uséénsityn can be solved by first separatingr) according to
(and generalized) by Mayhan and Fante, [4], [5] in applicatiomgx) = N(r)Z(z), where the lowest order mode structure in
to breakdown in narrow infinite [4] and rectangular [5] slothe axial direction is simplyZ(z) = cos(nz/L). This implies
radiators, also including situations involving microwave pulsdbat the remaining eigenvalue problem for the radial mode
where the finite pulse length affects the breakdown conditioteependenceV (r) of n(z) becomes
An example of a purely numerical analysis based on the 1d AN
variational formulation is given by Maldonado and Ayala [6], - — <7’ —) + [)\8(7’) — q}N =0
. . e ; 7 dr dr

who investigated diffusion controlled breakdown of gases in
cylindrical microwave cavities excited in differe®Mg,, and
modes. AN

The variational analysis is based on the fact that the char- dr (0)=0=N(1) (18)

acteristic eigenvalue problem can be reformulated as a varig- . . .
. . where, for convenience, in this case, we have chosen
tional problem according to

IV. VARIATIONAL APPROACH TOBREAKDOWN IN
CYLINDRICAL WAVEGUIDES AND CAVITIES

the normalization A = R? max v;(x)/D, s(z) =
3, . . .
1 ax v; = 5 (jor his case
Ldv — 14 v;(x)/ max v;(x) 4o (J0.7?’ and, in t . ,
J v v =0 (14) q=R*(v, —vp))/D. For simplicity, we have normalized the

radius toR, andvp, = Dn?/L* denotes the loss frequency
due to diffusion in the axial direction.

L =(Vn)? = As(z)n’. (15) The eigenvalue problem given by (18) does not have an

analytical solution (as far as we know), but has been analyzed

Approximate solutions of the eigenvalue problem can noearlier by McDonald [1] (forv, = 0) by means of a series
be found by means of Raleigh—Ritz optimization. This imef approximations, which finally leads to a complicated tran-
plies that the expected solution for(x) is expressed in scendental equation for determining the eigenvalue, i.e., the
terms of a flexible and physically reasonable trial functiobreakdown threshold. Here, we will use the direct variational
nr(x; p1, p2, ---) With a prescribed dependence onbut in- approach to find a simple analytical approximation for the
volving one or several unknown parametgrs j =1, 2, ---.  breakdown threshold.

where the Lagrangiai is given by
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1.8 : T T . . T T r TABLE |
CoMPARISON BETWEEN EIGENVALUES OF (18) FOR DIFFERENT VALUES OF 3 AND
16F _. beta=6 4 FOR L = co. ANALYTICAL EIGENVALUES A, AND NUMERICAL ONES A,
N . —— beta=4
141 N - beta=2 . B A, A, Relative error
N %o
NN
Rl o | s77 5.83 0.9
o
2 1t 1 | 785 8.01 2.0
3
Sosl 2 9.74 10.0 3.0
[=2]
K]
3 11.5 12.0 4.0
0.6 J
4 13.2 13.8 5.0
0.41 1
5 14.8 15.7 5.9
o2 1 6 | 163 175 6.9
38 06 04 o2 0 02 04 06 03 1

log10(R/L)

) ) o field. The exact lowest order mode of this equatioddsjor)
Fig. 1. Plots of the analytical breakdown condition given by (21) for som

different values of3. For easy comparison, the notation of [1] is used angndj thus, the va_lrlatl_onal approach (as a by product) gives
k2 = A a simple approximation of the lowest order Bessel mode

according to

Using the fact that a good approximation for the Bessel Jo(jor) = (1 — %)~ (24)
function Jo(jor) is
o(jor) wherea = (1++/2)/2 ~ 1.21. The corresponding eigen-
Jo(jor) = (1 — 7)™, m= (1 + \/5)/2 ~ 121 (19) value isA =~ 4a? = (1+ \/5)2 ~ 5.83 to be compared with
) ] ) ) _the exact eigenvalug = j2 = 5.78. The overall agreement
it becomes obvious that a ”f‘t};ral trial function to use in theyeen the variational predictions and the numerical results is
present case i&V(r) = (1 — =) where the parameter t0 beyenerally good (cf. Table I). The approximate mode structure
optimized isa. The reduced Lagrangian becomes begins to deviate from the numerically obtained one, for large
1 20 A q values of g, but the approximations for the corresponding
(L) = 2(20—1 mBt2a+1 - 200+ 1| (20) eigenyalues s_tiII_ show good agreement, which is typical of
the direct variational approach.

The two conditiong L) = 0 = 9(L)/d« give two algebraic  The approximate breakdown threshold can be written as
equations that can be manipulated into the form

R2,(0 2
A‘[l_ 2 }<m/3+2a+1>2 S G EE) P
(200 = 1) mf This implies that the effective density scale lengthy
(20 4+1)% 40® —da— 1 —mfp becomes
_ . (21)

(204 — 1)2 mﬁ D R R

i . . _ LeHE _— = (26)
Equation (21) can be interpreted as a parametric represen 1;:(0) VA 1+VmB+2

tation for the eigenvalue\ = A(q, m, 3), which directly

determines the breakdown threshold. This relation is shownAs expected, the effective density scale length depends on

in Fig. 1. The agreement is very good with the corresponditige geometrical size of the waveguid&)( but also on the

approximate result obtained in [1]. [Note though thatghaxis inhomogeneous mode structure of the microwave field (

in [1, Fig. 6-2] should be K L/7)? instead of(n /K L)*.] and on the degree of nonlinearity in the ionization frequency
The threshold relation becomes particularly simple in tHg).

limit case when the axial diffusion losses are snfaj| = 0)

and attachment losses can be neglecied= 0). Equation V. BREAKDOWN IN LOCALLY ENHANCED MICROWAVE FIELDS

(21) then reduces to the following simple expressions: In many microwave devices, the geometrical configuration

14+v2+mf gives rise to localized strongly enhanced microwave fields.
=T (22)  sych regions are potentially dangerous from the point-of-view
of breakdown since the field here may be much stronger
) than the globally predicted breakdown field. On the other
A= (1 + m) . (23) hand, a locally overcritical field does not necessarily imply
“global” breakdown, i.e., an increase of electron density in

In particular, we note that fam = 0, the eigenvalue equationtime everywhere in the configuration.
reduces to a homogeneous equation, which is the same as tHdowever, even below the breakdown threshold, there may
one determining the radial mode structure of the microwaeist regions in the volume where the electron density is high.

and
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In fact, if it is high enough to make the concomitant plasma Finally, we note thatL.; qualitatively determines the ex-
frequencyw, equal to the microwave frequenay, important tension of a high-density region or hot spot. In the case when
effects on the microwave propagation can be expected, ewka electron losses from the field enhancement region is due to
though the microwave field strength is formally below thdiffusion only, geometric lengths determine the scale length.
breakdown threshold. In a resonator or filter, the high fieldn the other hand, in the case when the field enhancement
region is usually confined to a small, but very importantegion is drained by electrons through diffusion into an at-
region from the point-of-view of device performance. If, intachment dominated region, the characteristic extension of the
this region, a high electron density is reached, this may béh electron density region is given by.g = v/aL,, where
enough to degrade the performance even though the electignis determined by (29). Furthermore, bdthandx, depend
density over the main volume of the resonator is (and remairs) the gas pressuge (D ~ 1/p andw,  p), which implies
small. Another dangerous scenario is the one where a localat L.y < 1/p. Consequently, in this situation, we expect the
high field (and concomitant high electron density) gives rise &xtension of the hot spot around a region of local electric-field
significant absorption and the formation of “hot spots” wherenhancement to increase with decreasing gas pressure. Both
the temperature of the gas is increased. At high gas tempeteese characteristic properties will be demonstrated further in
tures, the gas becomes even more liable to breakdown andttie full numerical and experimental investigations.

breakdown strength of the gas decreases, ultimately leading

to “global” breakdown. Thus, regions of strong electric-field VI. NUMERICAL APPROACH TOTHE BREAKDOWN
enhancement tend to give rise to regions of high electron PROBLEM IN CIRCULAR—SYMMETRIC RESONATORS

density and are potentially dangerous from the point-of-view

of microwave breakdown, and should be avoided in a careftd] Introduction

de3|gn_. ) ] . _ . Until now, we have only been considering analytical and
In view of the analysis of the preceding sections, it i§emianaiytical results and their numerical verifications for

instructive to discuss the scale length of the density variatigho - down in some simple geometries. Much of the char-

high field region, diffusion is liable to spread the electrong,g s have been derived. Nevertheless, for accurate predic-
out into the low f|el.d region where they are absorbed _thOns in more realistic practical situations, it is important
attachment and/or diffusion to the walls. The corresponding ,ve access to numerical programs, which are capable
scale length will then depend on the length of the enhancgg \anqling more general and complicated geometries. For
electric-field region and the diffusion distance to the wall s purpose, we have implemented a numerical tool for
well as on the relative strength of the diffusion and EJ‘ﬁaChme§6lving two-dimensional cylindrical-symmetric problems. The
processes: . . . _humerical procedure consists of two parts. In the first part,
In fact, it can easily b,e showq by analyzing some S'_mpkﬂe electric-field distribution for the lowest order TM mode
model geometries Itlhat, n S|tfuat|ons.where tr?ellomzatlon itf a cylindrical-symmetric resonator is computed and, in the
restricted to a small region of extensionand the 10Sses are goqnq part, the obtained electric field structure is used to solve
dominated by diffusion to a wall a distanéeaway from the ¢ gigenyalue problem determining the breakdown threshold
electron-producing high-field region, the density scale length;|$ i+o"<ame resonator
simply the geometric mean of the two characteristic distances.

This implies the breakdown condition B. Numerical Approach for the Determination of the Lowest

D L Order TM Mode in a Circular—Symmetric Resonator
V2 zta=vi=at >0 @ . rie Resona

v a The present numerical procedure is primarily intended for
where; is the ionization frequency in the high-field regiona circular—symmetric resonator filled with a homogeneous
A similar result, in the quite different situation of breakdowlielectric material (in our case air) without free charges. Since
in free space, was obtained in [9]. Note again that the chaye are only interested in the lowest order TM mode, we can
acteristic scale length is determined by the geometry of taésume tha¥’, = H, = H. = 0 and that all components
configuration only (cf. the result of the analysis of Section IVRf the electric and magnetic fields are independentyof

Consider now the situation where losses from the high-fieldom Maxwell’'s equations, one can then derive the following

region take place by means of diffusion into a low-field regiogquation forH, [12]:
where attachment is the dominating loss mechanism. We can
then show, in a similar way, that the breakdown condition and

density scale length are determined by Equation (30) is to be solved subject to the following condi-

/D /L, tions on the boundar
— =Lg=+val,=a\/— >a (28) y
YV a

H, =0, forr =0

1
VZH, — = H,+w?peH, = 0. (30)

i.e., as the geometric mean of the length of the high-field regi%d
and a characteristic attachment lendth determined by

R ne o
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where 7 is the unit vector normal to the surface of the oos-
boundary.

Having determinedd ., the components of the electric field °*¢
are obtained by the relations

0.03

g oH,
T WE az 0.025+
j (10
£.=-2 (32 0t) (2 oul

0.015+

C. Numerical Solution of the Nonlinear Eigenvalue Problem
The breakdown equation to be solved numerically reads
[8271 10 < on

922" ror 75)}+<W<E>—va<E>>n:0 (33)  oms

with n(z, ) = 0 on the metal boundaries of the resonator. oz 0.2 0015 001 0005 0
The modeling of the physical quantities appearing in (33) (a)

is here made more carefully than in the previous analytica!m4
and semianalytical investigations. In particular, the diffusion”
coefficient and characteristic frequencies of the problem arg_|
taken as [9]

106 0.03+
D~ — cm’/s
p

0.0251
vimp-5-10" exp[-73(E./p)~°* 1/s
E'F E'F 2 0.02
Vo R p-7.6-107% {—' <—' + 218)} 1/s.  (34)
p p
0.015F
In (34), the effective electric field, should be measured in
volts per centimeter and the pressurn torr. The true (rms)  oorr
electric-field strengtht.,,,; is related to the effective electric

field through the pressure dependent relation 0005
E? 0 : )
E2— _ Trms 35 0.025 : . 0.005 0
C 1+ (w/re)? (35) ®)

whererv, =p-5- 10° 1/s is the collision frequency betweenrfig. 2. Geometry of a rod resonator, as well as numerically obtained results
’ . . the electron density distribution at the breakdown threshold. Note the

the free eleCtrOnS a_nd gas atoms_' Equatlon _(33) is not of @1 of the center of localization of the electron distribution as the pressure

simple Sturm-Liouville form considered previously, and eveghanges from: (a) 10 torr to (b) 760 torr.

a numerical solution is not straightforward. However, it has

been found convenient to solve the equation in the followi

iterative manner. We write the equation in the form B Numerically Obtained Results

Some illustrative examples of the numerical simulation
Vnet (ys(z, r)) results are given in Fig. 2, which shows the electron density
————n=0 (36) distribution at the breakdown threshold. The numerical com-
putations have been made for a cylindrical rod resonator with
where s(z, r) denotes the normalized form function of thehe data: resonator frequeney 1639 MHz, cavity diameter
electric field in the cavity (cf. the functios(z) in our previous = 42.0 mm, cavity height= 40.0 mm, rod diametee 17 mm,
analysis) andy is a guess of the actual eigenvalye rod height= 35 mm and rod-edge curvature radits3.0 mm.

If we sety equal to an arbitrary value in (36), the equaSeveral of the physical features discussed in the previous
tion becomes an ordinary eigenvalue problem that is directgctions are clearly seen in the numerical results. In particular,
solvable forA = A(y) using MATLAB’s PDE Toolbox. The we note that, at high pressures, the breakdown process is a very
problem is to find they for which the solution of (36) gives local phenomenon, which initiates in the region of highest local
an eigenvalue equal tp Since the formulas for the ionizationfield enhancement at the top edge of the rod. This is typical
and attachment frequencies are only valid3ot E./p < 60 for attachment-dominated breakdown. However, at lower pres-
(Vlcm - torr) and E. = y - s(z, r), we infer thaty should sures, the picture becomes quite different. Here, the diffusion
span the intervabp < % < 60p. This interval is then steppedloss becomes important, the resulting effective diffusion length
in equidistant steps to find = A(y). The solution of the becomes larger than the dimension of the region where the
subsequent equatiok(y) = y is the desired value of. electric field is largest, and a large electron cloud spreads

DV + )
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Fig. 3. Numerically obtained results for the electron density distribution at o 1

the breakdown threshold in a resonator with a more complicated geometry.
Note the different localization of the two electron density eigenmodes shown
in: (a) (mode 1) and (b) (mode 2). 5t ]

out in the gap between the top of the rod and cavity wall. % 1 2 3 4 5 6 7 8
This picture is a direct verification of the physical conclusions Curvature radius (mm)
about breakdown in diffusion/attachment-dominated situatiof. 5. Numerical results for the breakdown threshold power as a function
in strongly inhomogeneous fields discussed in the previo?{ghe curvature radius of the edge of the red= 760 torr) in the resonator
. shown in Fig. 2.

section.

This change of localization of the electron density, which
may occur in a complicated geometry, is further demonstratetf the corners. The effect on the threshold breakdown power
in Fig. 3. In this case, a resonator tuning screw in the centéf, varying the curvature radius of the rod edge is shown in
together with the resonator rod, provide a high field region fig. 5. It is clearly seen how the breakdown power decreases
addition to the one at the edge of the hat, which will caus@th decreasing curvature radius. In fact, the breakdown power
breakdown to be initiated in different regions at high antpr smoothly rounded corners is a factor of two larger than
low pressure, respectively. In such situations, (36) providestBgt for sharp corners.
least two physically feasible solutions as the two modes with
the lowest eigenvalues. At low pressure, the mode showing
a predominance of electron density at the center have the VIl. N ANALYTICAL —EXPERIMENTAL APPROACH FOR
lowest eigenvalue and, thus, sets the limit, whereas at high BREAKDOWN PREDICTIONS
pressure, the mode having high electron density at the edge ofve will conclude the predictive analysis, by presenting
the hat sets the limit. The crossover region is at approximately simple complementary approach for extrapolating low-
400 torr. In Fig. 4, a corresponding “mode crossing chart” isressure breakdown data for resonators and filters to higher
shown. pressures. The method relies on measurements of the

A further aspect of the importance of local high electric fieldctual breakdown threshold at low pressures, where the
regions was also analyzed numerically. It is well known th&ireakdown power is also low, which makes it possible to
sharp metal corners give rise to locally very high fields and thatcurately extrapolate the breakdown threshold over a wide
a careful design should avoid such features, e.g., by rounditagnge of pressures up to atmospheric pressures. There, the
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corresponding breakdown power levels are more than 20 8Bakdown. An example of an application of this procedure
higher than for the low-pressure bench marking measurementgl be given in Section VIII.

The physical basis of the approach is the analysis inHowever, this approach must be used with some caution. In
Sections IlI-V, where the relative importance of diffusion and complicated design involving strongly anisotropic diffusion
attachment in determining the electron density scale length aometry, the above concept of a unique (one-dimensional)
discussed. The determination of the density scale length caale length, which characterizes the diffusion over the whole
be donea priori using numerical means, as was demonstratpdessure range, may be too simplified. In such geometries,
in Section VI-D, but it may also be determined empirically byhe density scale length may, in fact, depend on pressure as
experimentally determining the breakdown threshold at lothe electron density distribution changes center of localization
pressures. Having determined the diffusion length (or, in the device. Examples of this were given in the previous
equivalently, the density scale length at low pressures), whisbction (cf. Fig. 2) and also in the form of the mode-crossing
is a geometrically determined quantity, an extrapolation valghenomenon (see Fig. 3). From a physical point-of-view, it
for the whole pressure range can usually be made, at leastdeems reasonable that such mode relocalization or even mode
not too complicated geometries. crossings may occur since, e.g., at high pressure, the extension

In a straightforward version of this approach, we caof the high-field region together with the attachment process,
take the breakdown threshold as given by (4), where thather than the confining geometry, tend to limit the extension
characteristic scale length.; is taken as the diffusion length of the electron cloud.
that is unknown, but determined by the geometry of the
configuration [cf. (27)]. Using a simplified [as compared to ~ VIII. EXPERIMENTAL RESULTS AND COMPARISON
(34)] approximation for the net ionization frequency of air WITH THEORY
(e.g., [10], [11]), we have A. Introduction

Paet _ 4 107 {(Ee/p)} % —64.10% — D (37) An important practical problem when comparing theory and
100 pL3, experiments is to assess the actual electric field in the resonator
) ) o ) from the power fed into it. However, although the electric field
where £ is the effective electric field in volts per centimetelinqige the resonator is not directly available, it can be inferred

p is given in torr, D in centimeters squared per second, a om the total stored energyy and the(@-value of the cavity
L in centimeters. This implies that the breakdown conditiogCCOrding to

can be written

W = // EI‘QHlS dV
E, =Ey(f, p; Lp)
211/2 3/16 P:ﬂ 39
—375.p 1+<27rf> ] <%+6.4-104> Q (39)
Ve pLp In (39), the dissipated power means the average power

(38) dissipated in all the connection ports in addition to the internal
. o losses. Usually, a two-port is considered, and the power is fed
where £, is the real rms electric field, and the factor 3/16 igyo the input port from a generator. In (40), we give a slightly

a rational approximation of 1/5.33. more useful and detailed version of the second relation of (39),
Expression (38) contains one unknown parameter, the chagiiq for a resonator at resonance, having incident paiter

acteristic lengthL p, which determines the curvature of the woW

Paschen curve [1] as a function of pressure in the low-pressure P=

region. In order to relate data to expression (38), an additional Q‘f

unknown, the coefficient of proportionality between the square Qest = 447, (40)

of the electric field and the input power of the resonator, is Qe

needed. whereQ.; is the externaly for the input port andy, is the

The analysis proceeds as follows. The mean breakdol@aded@ for the entire resonator. Thus, using the numerically
power is determined for a sequence of input powers at tfund mode structure in the resonator, the strength of the
lower part of the Paschen curve. This set of points is thékectric field in the resonator can be related to the measured
approximated by a number of Paschen curves [i.e., curvespgwer level by means of (39) and (40).
the form given by (38)] with a fixed set off and variable ) i .
scale lengthsLp. In order to choose an optimalp, a B. Co.mpanson Between Theoretical Predictions and
penalty function is constructed, essentially being the sum B¥Perments
the deviations from the mean predicted breakdown threshold atn an experimental study, the breakdown strength of two rod
p = 760 torr for differentL ;. The penalty function is used toresonators was determined as a function of gas pressure and
find the optimall p, which is then inserted into (38) to give athe results were compared with the corresponding theoretical
prediction for the breakdown threshold of the resonator ovempeedictions. The measurements were done by fixing the input
large range of pressures, including, in particular, the mediumpewer level to the resonator to certain levels, and for each
to-high pressure region where actual breakdown tests are mposver level, lower the pressure until breakdown occurred, at
difficult to perform due to the high power necessary to causéhich point power and pressure were recorded. The procedure
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was repeated five times for each power level with change of s . ; ; ; ; ; ;
air in the resonator to exhaust breakdown products between
successive tests. Breakdown was detected by measuring thés|
sudden decrease in transmitted power, which signals that the
global wave propagation properties of the resonator changed.*®;
In order to be able to investigate breakdown under well—g4
defined conditions, a single resonator was constructed angl
tested for breakdown. A 73-mm-long rod made of Cu withg,,|
diameter 9 mm was inserted into an Al cavity of 74-mm height
and diameter 30 mm. Thus, in this case, the air-gap to th§35
silver-coated lid is only about 1 mm. The edge of the rod hag
a 2.5-mm curvature radius in order to avoid a sharp edge. Thesor

resonator had two ports, each with an exter@abf 134. The caloulated -
H 25 d .
internal @ of the resonator was 2050. 3 3 averagad o

A second experiment was done on a specific (classified) 2 . , ‘ ‘ ‘ fued
Allgon product, (no data on the geometries are given, but it © 100200 300 e o 0 T B

is of a similarly simple shape as that of Fig. 2), for rather
small pressuresp(< 100 torr) where the breakdown thresholdFig- 6. Comparison between experimental results and theoretical predictions
easily coul_d be reached. Ir_l this case, there were four resonaff gﬁe%riﬁ]kﬁgngs?égfgflgx%ser?mfgggiOgoﬁisgtg: g&zfgggeoiofz\fnggfﬁ'al'y
arranged into an approximate Chebyshev filter of 15-MHaental points for given input power (o), the numerically obtained curve (—)
bandwidth. According to the algebra of an ideal lumpednd the semianalytical extrapolated points (*).
element network showing this Chebyshev transfer function,
the two inner resonators would experience the highest amount
of stored energy at matched operating conditions [13]. 70k
The experimental results obtained for the specially designed
single resonator are summarized in Fig. 6. The mean break-ss-
down pressure was determined experimentally for resonatgs
pressures ranging from 30 to 500 torr. The agreement with th§6°’
fully numerical results is shown to be good over the considered
pressure range. The numerical results are apparently predicti@s'
a somewhat lower value than what is observed from thé";s
average breakdown threshold. This difference can partly bé
explained as due to the fact that theory predicts the breakdown,g|

T T T T

calculated -

level assuming that there are always free electrons available averaged o

to initiate the ionization process. Thus, if there are no free 4 ’S‘L‘:jval . .
electrons, the resonator can withstand higher power. This

implies that, in the experiment, where the pressure is decreased®, 100 200 300 a0 =00 e0 700 800

in time, the time delay for a first electron to appear tends to pressure (Torr)

spread out the measured breakdown points in the directionmf 7. comparison between experimental results and theoretical predictions
low pressure. for the commercially available Allgon product. The result of the survival test

In the case of the semianalytical approach, the corrg-marked &). Other notation as in Fig. 6.

sponding penalty function was found to have a pronounced .
minimum for a diffusion length ofL.;» ~ 0.4 mm, using the sidered pressures. Breakdown tests at atmospheric pressures

experimental points at low and intermediate pressures. T‘ﬁ%md not be done with the exis_ting equipment, but a pulsed test
corresponding extrapolation curve is also included in Fig. F?S been made p_t: 760 torr with microwave pulses of pulse
The curve has two free parameters, the geometrical length. rﬂgth> 1 s (which should be sufficient to cause breakdown
diffusion L p = 0.4 mm and an offset 0f29.3 dB determined : 't. should occur). The -resonat_or sust{;uned 12"“’\.’ peak
by the relationship between input power and the obtainiﬂwvalen.t POWEer, \.Nh'Ch IS gonglstent with the predictions.
electrical field in the structure. The agreement between t g's survival point is shown in Fig. 7.
semianalytical and the fully numerical predictions, as shown
in Fig. 6, is also very good for the extrapolated region up to
atmospheric pressure. In this investigation, we have considered several aspects
The corresponding comparison for the commercially avaibf microwave breakdown in resonators and cavities. The
able Allgon product mentioned above is shown in Fig. 7 anfirst part of the analysis has emphasized the main physical
again, shows very good agreement. The considered presqunaperties of microwave-induced breakdown in the presence
range implies that we are investigating breakdown processesjnhomogeneous electric fields—a feature which introduces
which are diffusion dominated for the lowest pressures tmportant complications in an analysis of the processes and
become diffusion/attachment dominated for the highest cafte dynamics involved in the breakdown process. It has been

IX. CONCLUSIONS
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demonstrated that, using an approximate approach basedrarical steps—one, which solves the microwave-mode struc-
direct variational methods, significant progress can be mailee in the resonator or cavity and another that determines
in formulating explicit and simple breakdown criteria fothe breakdown condition once the mode structure is known.
physically and technically important situations. The predictions have been tested against experiments at small
In these first studies, comparatively explicit expressions fto moderate pressures, where breakdown tests are easy to
the microwave electric field have been assumed. Althouglerform, and the agreement is found to be very good. Thus, this
this is a legitimate approach in simpler geometrical situationsyumerical approach can be used as an efficient and accurate
many technically important situations involve more or legsredictive tool for microwave breakdown in the design of
complicated geometries where an analytical determination resonators and filters even up to atmospheric pressures.
the mode structure of the microwave field as well as of the
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