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Abstract-This paper describes an analysis method that extends 
the applicability of the frequency-domain methods to strongly 
nonlinear circuits. Nonlinearities are described with Chebyshev 
expansions which are evaluated with a numerically stable three- 
term recurrence formula. The method is coupled with a novel, 
measurement-based consistent modeling approach which allows 
improved accuracy in describing the frequency-dependence of the 
measured small-signal parameters. The analysis method and the 
modeling approach are verified by comparing measurements and 
calculations on a MESFET mixer, driven with two and three 
tones. 

I. INTRODUCTION 

ARMONIC-BALANCE (HB) methods have matured 
into a reliable workhorse in the design of nonlinear 

microwave circuits. However, when the circuit has several 
excitation frequencies, the analysis becomes easily impractical 
due to the long computation time. Even with only two inde- 
pendent tones, the analysis is very slow on a workstation [l], 
and the calculation of the intermodulation products of a mixer 
with three independent frequencies is most conveniently done 
on a supercomputer [2]. At present the maximum number of 
independent frequencies that can be handled with HE software 
is limited to three, although there would be need for more, for 
example in the satellite communication systems. 

Frequency-domain methods do not suffer from the same 
limitations: both the linear and nonlinear parts of the circuit are 
analysed in the frequency domain so that the time-consuming 
conversions between frequency and time domains are avoided 
[3]. The number of independent frequencies is not limited to 
three; it is the total number of frequencies, not the number 
of fundamental frequencies, that determines the complexity 
of the problem. The spectral-balance method of Rhyne et aZ. 
[4], which uses power series to approximate the nonlinear 
functions, is a well-known example of frequency-domain 
methods. 

Modeling of nonlinear devices has been the weakest point 
of the frequency-domain approach. Nonlinear components are 
traditionally modeled in the time domain by using algebraic 
equations to describe the nonlinearities. These equations them- 
selves are typically simplified with nonconsistent construction, 
limited bias or frequency range, etc., and determining the 
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model parameters by fitting the equations into measured data 
is often a complicated and inaccurate procedure. Such a model 
can be converted suitable for the frequency-domain analysis 
by fitting power series [4], polynomial expansions [5] ,  or 
specific functional approximations [6] to the model equations. 
However, this is neither accurate nor elegant approach. 

Second, approximation of strongly nonlinear functions with 
power series requires that there is a great number of terms, 
e.g., several tens, in the series. Large coefficients are needed 
for the high-degree terms in the power series and this de- 
grades significantly the numerical accuracy. As a result, the 
application of the methods using power series to describe the 
nonlinearities has been limited to relatively weakly nonlinear 
circuits. For example, to the author’s knowledge no results 
have been published about the application of the generalized 
power series method [4] to strongly nonlinear cases like mixers 
under large RF-signal excitation. 

This paper describes a frequency-domain method where 
both the limitations of the conventional power series ap- 
proach are removed: All the nonlinearities are represented 
in this method with Chebyshev expansions instead of power 
series [5], [7] ,  and [8]. Excellent numerical stability of these 
expansions, when evaluated through a recurrence formula, 
allows the use of high-degree expansions, which are necessary 
for describing strongly nonlinear devices. A novel consistent 
modeling approach is presented, where the frequency-domain 
large-signal model is constructed directly from small-signal 
measurements through integration [9], without the intermediate 
step of fitting to algebraic model equations. In comparison, 
e.g., to the Root model [lo], this approach offers possibilities 
for more accurate representation of the frequency-dependence 
of the small-signal y-parameters of the device. This principle 
allows the description of the frequency-dependent character- 
istics (e.g., gds)  of the device in a natural way, in contrast 
to the HB methods, where the time-domain formulation of the 
nonlinearities makes it very difficult to construct a large-signal 
model that is accurate both at dc and RF. In fact, the earlier 
disadvantage of the frequency-domain approach, modeling of 
nonlinear devices, is now turned into an advantage. 

Coupling the new large-signal model to the frequency- 
domain algorithm results in an effective and accurate method 
for analysing nonlinear circuits under multi-tone excitation. 
This is demonstrated in the last part of the paper, where 
measured and calculated results for a MESFET mixer are 
compared. The method is so efficient that the intermodulation 
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Fig. 1. Flow-chart of the frequency-domain algorithm. 

analysis of the mixer, with three independent tones and over 
100 frequencies in total, is possible on a PC, even with so 
high RF levels that the mixer is driven to the saturation of the 
IF and beyond. 

11. FREQUENCY-DOMAIN ALGORITHM 

The flow chart of the algorithm is shown in Fig. 1. Main 
differences in comparison to the conventional HB methods 
are in the following blocks. 

Nonlinear elements are approximated with Chebyshev 
expansions (Step 1). 
The kequency-domain response of the nonlinear el- 
ements for given spectra of the driving voltages is 
calculated directly in the frequency domain (Step 6). 
For this purpose the frequencies are selected prior to the 
analysis in Step 3. 
The frequency-domain formulation of the problem al- 
lows very economical evaluation of the Jacobian in Step 
8. 
strongly nonlinear circuits the full Newton step fails 

very often and some strategy for global convergence has to 
be adopted. Presently, the backtracking line-search algorithm 
is used for this purpose [ 111. Details of the frequency-domain 
algorithm are discussed in the following chapters, followed by 
a description of the large-signal model. 

A. Selection of Frequencies 

In the frequency domain method of this study, the frequen- 
cies at which the circuit is to be analysed, are always selected 
before solving the circuit equations. During the analysis, this 
set of frequencies, or the frequency set S, is kept fixed and 
only those harmonics and intermodulation products falling on 
these frequencies are taken into account in the analysis. Each 
frequency w k  of the frequency set can be written with the help 
of P fundamental frequencies w1, w2, . . . , w p  

W k  = k l w l  + k 2 W a  + ' ' ' + kpWp (1) 

where the harmonic numbers k l ,  . . . , k p  are integers. For each 
frequency the order is defined as 

P 

ORD(wk) = 1 k ,  1 (2) 
2=1 

Determining the frequencies includes the selection of the 
maximum values for the harmonic numbers Icl,. . . , Icp, so 
that all the significant frequencies are retained, but the total 
number of frequencies Nfreq is kept to the minimum. 

Two quantities are used to determine the frequency set, 
maximum number of harmonics (maxH) and maximum order 
of intermodulation (maxZMt). maxH is a vector containing the 
maximun harmonic numbers for each fundamental frequency 

(3) 

and maxZMt is a scalar. maxH gives the maximum number 
of harmonics for each of the P fundamental frequencies 
and maxZMt indicates the maximum order of intermodulation 
products taken into account. Only positive frequencies are used 
in the calculations. Thus the frequency set S is defined by the 
following conditions 

s = {w I w = k l W l +  k2WZ + . . . + k p w p ;  C1, C2, C3) (4) 

T maxH = [klmax k ~ m a x  . . k ~ m a x ]  

c1. w 2 0  
C2. Ik,( I k,,,,, i = l , 2 , . . . , P  
C3. ORD(w) 5 maxZMt, 

when at least two harmonic numbers, IC, 
and kJ are not zero. 

This selection of frequencies is unconventional. More often 
the spectrum is either triangular, for which C3 holds for 
all i, or rectangular, which is defined by C2. The reason 
for this more complicated truncation criteria is the additional 
flexibility in controlling the frequency set, as the number of 
harmonics for each of the fundamental frequencies can be 
separately controlled and, in addition, the maximum order of 
the intermodulation products can be independently defined. 

In this study the frequencies of the frequency set are 
arranged, starting from zero (=dc) according to the increasing 
order. The highest order in the frequency set is maxORD 

( 5 )  

Within each order, the frequencies are sorted by magnitude, 
with the lowest frequency coming first and the highest fre- 
quency last. The frequencies are written, in this order, to 

maxORD = max{ ICzmax , maxZMt}. 
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the frequency vector (frequency table) ftab. All the voltages, 
currents, charges etc are represented in the analysis with 
complex vectors of phasors with length equal to Nfreq, the 
number of frequencies. The phasors are arranged in the same 
order as in ftab, and if the frequency f k  of a certain phasor 
v k  is needed in the analysis, it is available as the kth element 
of the frequency table ftab[k]. Associated with the frequency 
table is the intermodulation table imt, which is a vector of 
integers giving the indices (row numbers) of ftab at which 
each IM-order begins. This vector is used when performing 
the multiplication of two waveforms in the frequency domain. 

B. Frequency-Domain Operations 

All the voltages, currents, charges and other waveforms of 
the nonlinear circuit are represented in the following form in 
the time domain, here written for the voltage 

N 

v(t)  = ~ ( V k , c o s ( w k t )  - Vk, sin(wkt)}. (6) 

Thus the frequency component of the voltage at frequency W k  

is given either with two real numbers, V k ,  and v k , ,  or with a 
complex phasor vk. These two are related according to 

k=O 

v k  (vk(e3’p’ = v k c  + j v k s .  (7) 

The time-domain quantities, waveforms, are written with low- 
ercase letters, e.g., v( t ) ,  and the corresponding representations 
in frequency domain, (frequency) spectra, are written with 
bold typeface, e.g., v. 

Following symbolic notation is used to indicate the re- 
lationship between the time-domain and frequency-domain 
representations 

v = F { v ( t ) }  or v tf v(t) .  (8) 

The spectrum corresponding to the waveform (6) is given with 
the real (2N + 1) x 1 vector y, where underlining indicates 
the fact that it is a real vector 

- v = [VO v1, Vls v2, v2s . . . v,, (9) 

Alternatively, the spectrum is given with the complex vector 
of phasors (VO is the real dc voltage) 

v = [VO v, v, . ’ .  VN]? (10) 

Generally, lowercase letters are used for scalars, bold lower- 
case letters €or vectors, and bold capital letters €or matrices. 

Nonlinear components are described in this work with 
the help of single and double Chebyshev expansions for 
the nonlinear functions. For strongly nonlinear devices also 
rational functions can be used [12]. Evaluation of the time- 
domain response of these components to an excitation of 
the form of (6) involves only the basic algebraic operations 
addition, subtraction, multiplication and division between the 
two waveforms u ( t )  and b ( t ) .  In the frequency-domain al- 
gorithm the response is calculated directly in the frequency 
domain. This means that we have to be able to calculate 
the frequency-domain equivalents to these basic operations 
between two frequency spectra a and b, remembering that a 

and b are complex vectors of the phasors like in (lo), where 
the frequencies are truncated and sorted as was described 
earlier. 

Addition and subtraction of two spectra are trivial 

c ( t )  = u( t )  zt b ( t )  c? c = a 4 b. (1 1) 

In contrast, time-domain multiplication and division are 
nonlinear operations resulting in the generation of new fre- 
quency components. Product in the time domain corresponds 
to the convolution in the frequency domain 

~ ( t )  = ~ ( t )  . b ( t )  H c = a * b (12) 

and division in the time domain is the inverse operation, 
corresponding to the deconvolution in the frequency domain 

b ( t )  = c ( t ) /a ( t )  t) b = c#a. (13) 

Here the symbol “W’ is used to indicate the deconvolution. 
Repeated application of these operations during the evaluation 
of the response of the nonlinear component results in very 
large number of frequencies, even if there are only few driving 
frequencies. However, phasors at many of these frequencies 
are insignificant (harmonics and intermodulation products of 
high order). The basic principle is adopted that the frequencies 
of interest are determined prior to any circuit analysis. Thus 
the length of voltage, current, charge, etc., vectors remains 
constant (=Nfreq) throughout the analysis and only the com- 
plex amplitudes of each frequency component change during 
the analysis. 

In the following chapters the calculation of the last two oper- 
ations in the frequency domain is described, first two different 
ways of calculating the product (12) and then the division (13). 
These operations were outlined earlier in [ 121, and a similar 
set of operations was also included in the “arithmetic operator 
method” in [6]. However, since the approach taken here with 
special emphasis to the effective truncation of frequencies, is 
somewhat different to that in [6],  it is justified to present a 
detailed description of the frequency-domain operations. 

Direct Multiplication: The most straightforward way of 
calculating the time-domain product (12) is to multiply, in turn, 
each complex phasor A, = A,, + jA,, of a( t )  by each phasor 
B, = Be, + jB,, of b( t )  and apply trigonometric rules to 
assign the result to the corresponding phasor Ck = C,k +jc& 
of c(t) .  Three possible cases are encountered when multiplying 
phasors A, and B,, depending on the magnitudes of w, and w, 

1) Sum frequency: 
Ck = A,.  B3/2 w k  = W ,  + W j  E S 

AND 
{ 2) Difference frequency (positive): 

OR 
C k  = A,. B,*/2 w k  = W, - W ,  E S 

3) Difference frequency (negative): 
Ck = A,* ‘ B3/2 wk 1 W3 - W ,  E s> 

where the asterisk (*) indicates complex conjugate. 
Thus each phasor of c is calculated 

ck = c k p  + C k m p  + Ckrnn (144 



NARHI: FREQUENCY-DOMAIN ANALYSIS OF STRONGLY NONLINEAR CIRCUITS 

- - . . . .  . . . . .  
. . . .  . . . . .  
. . . .  . . . . .  
. . . .  . . . . .  

- - . . , . 2;:) . . . 
. . . .  &j )  #) . . . 
. . . .  . . . . .  
. . . .  . . . . .  
. . . .  . . . . .  - - 

185 

. 

where 

and 

On some occasions, it is useful to be able to omit the 
multiplications between high-order phasors. Recalling that the 
frequencies in a and b are determined by the frequency table 
ftab (through quantities maxH and maxIMt ), we now define 
a new quantity maxIMp, which sets the maximum order of 
the intermodulation products that are taken into account when 
calculating the convolution. Setting maxIMp = 2 maxORD 
is the normal case and it means that all the components 
falling on the frequency set S are taken into account when 
calculating the convolution, while muxZA4p = 1 neglects all 
the frequency conversions. maxZMp gives additional flexibility, 
as the number of multiplications in the calculation of the 
convolution can be reduced by excluding products between 
high-order frequencies by setting maxIMp < 2 maxORD. This 
is demonstrated in Fig. 2. 

The phasors in a and b are arranged in the ascending order 
of intermodulation and thus it is easy to avoid unnecessary 
multiplications by performing the multiplication of each A, in 
turn with only those B, with 0 5 j 5 jmux, where jmax is 
the maximum index of ftab so that ORD(w,) + ORD(w,) 5 
maxIMp. In the practical procedure it is important to avoid 
comparison and branching operations and to use predeter- 
mined, direct mapping instead. Since we have defined exactly 
in which order and how the multiplications are performed, 
the result from each product of two phasors can in fact be 
assigned to the corresponding output phasor C k  with the help 
of precalculated index vectors. All the necessary products 
(but only those!) between the real and imaginary parts of the 
phasors of the two spectra are calculated into a single vector 
and the final result is obtained simply through assignment and 
addition operations using these index vectors. 

These two features, avoiding all unwanted multiplications 
and the use of precalculated index tables, are instrumental in 
making the convolution procedure efficient. This procedure 
of calculating the truncated convolution was originally used 
in [5] and is conceptually similar to the spectrum mapping 
principle of [ 131. 

Convolution as a Matrix Product: The direct procedure de- 
scribed above is fast and well suited to repeated calculation 
of the product (12) as required in the recursive evaluation 
of the Chebyshev expansions in the frequency domain. In 
some occasions, however, it is advantageous to formulate the 

ORDER OF aOj 

Q I 2 .  3 . 4 , 5 

ORDER 
OFaj 

maxlMp maxlhlp 
= 3  = 7  

Fig. 2. Example on how the frequencies included in the frequency-domain 
convolution are affected by the parameter maxlMp. Two fundamental fre- 
quencies. 

product as an explicit matrix product 

c ( t )  = a( t )  * b ( t )  cf c = A * b. (15) 

This is the case for example when the inverse operation or 
division has to be performed, as will be seen later. Calculating 
the convolution as a matrix product was originally developed 
in [ 121, where rational functions were used to describe strongly 
nonlinear components. The arithmetic operator method of 
reference [13] follows the same principle. 

The product (15) cannot be formulated using complex 
representation (lo), instead _a and b are written as real (2N + 
1) x 1 vectors, as in (9). The (2N+ 1) x (2N + 1) convolution 
matrix A is formed through a transformation from _a, here 
written symbolically with operator “N” 

- A = i j  (16) 

This transformation is found by first writing (15) in the matrix 
form 

Submatrix Z(i j )  gives the contribution of the frequency com- 
ponent at wj  in b ( t )  to the frequency wi in c ( t )  
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It is calculated, for each pair of frequencies w, and w3, from 
those phasors Ak in a( t )  which, when multiplied by phasor 
B, at frequency w,, give contribution to the phasor C, at 
frequency wz, The submatrix 2(’J) consists of three parts, 
corresponding to whether w, is the sum frequency, positive 
difference frequency or negative difference frequency of wk 
and w, 

1) Sum frequency 

2) Positive difference frequency 

3) Negative difference frequency 

Only those frequencies wk E S are included in (20) which 
satisfy the condition 

ORD(wk) + ORD(w,) 5 maxZMp. (21) 

Again, index tables are formed prior to the circuit analysis, cor- 
responding to the three cases above. During the analysis, the 
construction of the matrix A in (15) requires only assignment 
and addition operations on the elements of vector g .  Vector c 
is then obtained from the conventional matrix product. 

Division: Calculating the convolution as a matrix product 
(15) with the help of the convolution matrix A = 5, has 
the consequence that the time-domain division (13) can be 
calculated by inverting this matrix 

b ( t )  = c(-t)/a(t)  * b = 4-l . c. (22) 

is most efficiently calculated by solving the 
set of linear equations (22), explicit formulation of the inverse 
matrix is generally not required. Being able to calculate the 
division of two waveforms in the frequency domain allows US 

to use rational functions (and continued fractions) to model 
nonlinear components [12]. The same principle will also be 

method. 
In this last application, the ability to control the order of 

intermodulation products in matrix A by maxIA4p is especially 
beneficial: in principle A is a dense matrix, but reducing 
maxIMp results in sparser A, which additionally is then close 
to lower triangular. Fig. 3 shows an example of the structure 
of the convolution matrix. It is possible to take benefit from 
the sparsity and special structure of A and write a special 
algorithm to solve the system (22) efficiently. In this work this 
has not yet been done, but A is handled as a full matrix and 
Crout’s algorithm is employed to solve the system of linear 
equations. 

In practice 

used later to construct and invert the Jacobian in the Newton’s 

............. ................. ................. ............... ............... .......... .......... .............. .............. ............ ............ . . . . . . . . . .  . . . . . . . . . .  .......... .......... ........................ ........................ ............ .... .................. .. .................. .. .................... .................... ...................... ...................... ............... 

............ . . . .  

................. ... ... ... .- , . . . . . . . . .  . . . . . . . . .  ......... ......... ......... .... ......... . . . . .  . . . . .  
_. . _ _  . 

_. ._ .... .* I*  ..................... ..................... ... .... ... .... ................. .... ................. .*.l ....... .... ......... .... .... . .* 11.1 ......... .... .... . . . . .  .I,. 

Fig. 3. Example of the structure of the convolution matrix. Each dot indi- 
cates a nonzero entry in the matrix. Two fundamental frequencies, maxIMp 
= 5. 

111. LARGE-SIGNAL MODEL 

We now turn to the construction of the frequency-domain 
nonlinear model. The model is measurement based, which 
means that the measured small-signal data is used directly, 
without the need to fit the data to algebraic formulas. This work 
concentrates on the modeling of a MESFET, but the modeling 
principle is completely technology independent. In fact, this 
approach was used earlier in [SI to describe the currents 
of a “complete” black-box model for the extrinsic FET, 
including parasitics. In that work the separate determination 
of the parasitics was not necessary, they were included in 
the nonlinear model itself. Here we use the y-parameters of 
the intrinsic FET to construct the model; in this way the 
frequency-dependence of the y-parameters is less severe and 
lower order series are sufficient for the accurate representation 
of the y-parameters. 

We assume that the currents at the two terminals of the 
intrinsic FET, driven with large-signal voltages 211 ( t ) ,  v2(t), 

can be written in the following form (i = 1,2) 

(23) 

This expression is an extension of the conventional quasistatic 
formulation [14], [15], where only the first two terms of the se- 
ries expansion are included, namely the static current through 
a nonlinear conductance, g!’), and the first order dynamic 
current through a nonlinear capacitance, @:‘I. The higher 
order terms allow an accurate description of the frequency- 
dependence of the measured small-signal parameters, as will 
be shown below. We have a large-signal circuit model as 
shown in Fig. 4. 

We require that the model is time-invariant, i.e., the nonlin- 
ear functions g!’) and qz(k) are not explicit functions of time, 
but their time-dependence is solely through the dependence 
on the two controlling voltages. Further, we assume that the 

. ( 3 )  + 4 %  (Ul,V2)+.... 
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n 

Fig. 4. Large-signal model for a nonlinear two-port. 

partial derivatives of these functions 

i , j = 1 , 2  k = l , 2 , . . .  (24) 

depend only on the instantaneous voltages w l ( t ) ,  w 2 ( t ) ,  and 
not on their time-derivatives. With these assumptions, we can 
write the small-signal response of the device at port i ,  at 
dc bias point V l o , V 2 0 ,  to a small variation in the voltages 
dvl ( t ) ,  dw2 (t)in the following form 

d i t@)  = hj;)dv, + h 3 w 2  + hpdtjl 

+ h,(i)dtj2 + h:;)di& + h$)dij, + + 9 . .  (25) 

Here all the partial derivatives are developed at the dc oper- 
ating point. Moving to the frequency domain, we obtain the 
response to a small sinusoidal excitation dwl ( f k ) ,  d w z ( f k ) ,  at 
frequency f k  

d i , ( f k )  = [h!:’) + ( j W k ) h ! i )  + ( j W k ) 2 h $ )  + -1 . d V l ( f k )  

( 0 )  2 ( 2 )  + [h,, + ( ~ w I E ) ~ : : )  + ( j ~ k )  h,2 + *..I * d w a ( f k ) .  

(26) 

This can be compared with the measured small-signal response 
at a dc bias point ( V ~ O ,  V 2 0 )  

d i i ( f k )  = Y i l ( V l 0 ,  V 2 0 , W k )  . d V l ( f k )  

+ YiZ(K0, V 2 0 , W k )  * d W 2 ( f k ) .  (27) 

Here yz3 (KO, V 2 0 ,  w k )  are the measured small-signal 
y-parameters of the intrinsic FET at the bias point (VIO, V 2 0 )  

and frequency 6. We can now see that the higher order 
terms in (23) account for the frequency-dependence of 
the measured y-parameters: The second-order term gives 
quadratic frequency-dependence to the real part of yz3, the 
third-order term causes cubic variation in the imaginary part of 
yx3 and so on. Thus we can identify each of the terms in (25) 
directly from the measurements. The large-signal functions 

in (23) can then be calculated from the path-independent 
line integrals [lo] 

gI(o)(wl, w 2 )  = ~ Z O ( V 1 0 ,  KO) + 

We can notice that it is important that the small-signal func- 
tions h$) do not depend on the time-derivatives of the 
voltages, since, if this were the case, it would be impossible 
to construct the large-signal functions 9:’) and q:’) from 
static small-signal measurements only. The model of (23) is 
quasistatic despite the presence of higher order terms in the 
series which correspond to higher order circuit elements [I61 
in the small-signal circuit model. 

We observe that retaining only the first two terms in the 
series (23)  gives resemblance to the Root model [lo], where 
the frequency-dependence of the real parts of y11 and y12 
(caused by the series connection of r, with C,, and T g d  

with C g d ,  respectively) are neglected. Keeping higher order 
terms in the series allows more accurate description of the 
frequency-dependence of the y-parameters of the intrinsic de- 
vice in a consistent manner. The large-signal and small-signal 
models are inherently consistent, since the large-signal model 
is directly constructed from the small-signal characteristics 
through the line integrals (28). It should be noted that the 
“delay-effect,’’ corresponding to the imaginary part of y21 

(which is normally described with T in small-signal models) is 
represented in this model with hi;), i.e., as a transcapacitance, 
as is done also in [lo]. 

Next step in the modeling is finding the Chebyshev ex- 
pansions to describe the dependence of each of the h“) 
functions on the two bias voltages. For example, for the static 
conductance we have 

,? 

L K  

n=O m=O 

Here x and y are the bias voltages, normalized to [ -1 .  . . + 11 
and K and L are the degrees of the expansion in the two 
dimensions. Standard surface-fitting procedures can be used 
to determine the Chebyshev coefficients amn [17]. The co- 
efficients are then written into matrix H!:), which has the 
dimension ( K  + 1) x ( L  + 1). In practice, the coefficients for 
a high-degree expansion are first determined and the degree is 
then reduced as long as the approximation error is acceptable. 
With the Chebyshev expansions, in contrast to the power 
series, the coefficients for a lower-degree expansion are found 
simply by truncation of the higher degree coefficients at the 
desired point. 

For the evaluation of the line integrals in (28), the Cheby- 
shev coefficients for the integrated small-signal functions have 
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to be determined. This is easily done from the coefficient 
matrices Hi:) for the functions by using the integration 
formula of the Chebyshev polynomials [ 181. The resulting 
matrix of coefficients, integrated, e.g., over z (that is, over 
vlj, is written as H$. 

Iv. EVALUATION OF THE CURRENTS 
IN THE FREQUENCY DOMAIN 

Fig 5. Clrcuit model for the simulation of the mixer measurements Functions approximated with Chebyshev expansion are 
evaluated in a numerically stabe manner by using the well- 
known Clenshaw’s recurrence formula [181. In the frequency 
domain, a two-dimensional function f(z, y) is evaluated from 
the following recursion, by first calculating vectors c, in 

The current at port i of the device, given in (23), IS then 
calculated in the frequency domain 

y-direction for each i = K, K - 1,. . . , O  iz(v1, .2) = gz(v1, v2) + 0 . qll)(vl, v2) 

Next, these coefficient vectors are used to evaluate the function 
in x-direction 

d K + 2  = d K + 1 =  0 
d, = 2 . x * dz+l - d2+2 + cz 

z = K , K - l , . . . , O  (30b) 
1 

f ( X , Y )  = $do - d2). 

Here x and y are the normalized voltages v1 and v2, matrix 
A contains the Chebyshev coefficients az3 and its dimension 
is ( K  + 1) x ( L  + 1) and 6 is a (N + 1) x 1 vector, with 
the first element equal to one and the others zeros. We use the 
short notation with operator T{} for this recursion 

f(x, Y) = T{A, X, Y I .  (31) 

We are now able to calculate the large-signal functions, given 
in (28), directly in the frequency domain, for given spectra of 
the driving voltages 

gt(v1,vz) = T{D,d“,za,yoP 
+ [T{ H$k, x, gob} - T (  H$k, 206, yes}] 
+ P.[qH:;;,x,Y) - T{H!;!,,x,yo6)] 

q, ( k )  (v1,vz) = 01. [T{H$L,x,go6) - T{H!~~,zoS,yoS}] 

+ P .  [2’{H:;;,X,Y} - T{H,(;;,x,yo6}]. 

(32a) 

(32b) 

Here 20, yo is the normalized dc operating point, D,d“ is the 
matrix of Chebyshev coefficients for the dc current in port 
a and a and P account for the change of variables in the 
calculation of the line integrals 

dY 2 

+ a2. q~”(vl ,vz)  + . . . . (34) 

Here 0 is a (N + I) x ( N  + 1) matrix with the angular 
frequencies jwkin the diagonal and zero elsewhere. 

V. JACOBIAN 
The frequency-domain formulation of the analysis problem, 

presented in the preceding chapters, allows the construction 
of the Jacobian in a very economical way. We consider, as an 
example, the circuit of Fig. 5,  which is used in the next chapter 
to anatyse the operation of a MESFET as a mixer. The gate and 
drain currents of the intrinsic FET are represented with current 
sources, as was presented in the preceding chapter. Impedances 
Z,, ZL, and 2s constitute the linear part of the circuit: ZG 
includes the parasitics in series with the gate and the generator 
impedance, which is 50 R at RF frequencies. Similarly, ZL 
represents parasitics at the drain lead and the load impedance. 
Voltage sources el  and e2 provide the excitation to the circuit: 
el  includes the dc gate voltage, LO source and one or two RF 
generators, while e2 consists only of the dc drain voltage. 

Given the voltage spectra v1 and v;? at the terminals of the 
intrinsic FET, the gate and drain currents are calculated from 
(34), here written in an abbreviated form 

il  = f l ( V 1 , V Z )  (354 
(35b) 

The currents of the linear part of the circuit, calculated for the 
same voltages, are 

ilL = YG . (VI + vs - el) (364 { i2L = Y L  . (v2 + vs - e2) . (36b) 

Here YG and Y L  are diagonal matrices of the generator and 
load admittances. Ideally, the magnitudes of these currents 
should be the same as those calculated from the nonlinear part 
of the circuit in (35). However, since we do not not know 
exactly the correct voltages, we have the error vectors 

{ i 2  = fz(v1,va) . 

‘ E X  = il + i l L  

(374 
= [I + Z s  . YG] . i l  

+ Zs . YG . i2  + YG . (VI - el) 

= ZS . Y L  . il + [I + Z s  . YL]  . i z  
E;? = i 2  + i;?L 

. (37bj + Y L  . (VZ - e 2 )  . 
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Here 1 is the identity matrix with dimension (Nfreq x Nfreq). 
For the next iteration, we have to find the changes in the volt- 
ages, Av1 and Av2, that are needed to reduce the predicted 
error to zero. In the time domain, changes Avl(t), AV2(t) 
cause the following changes in the currents 

VI. MODEL FOR A MESFET 

A large-+ignal model was for a 1 300 CLm 
monolithic M E S ~ T  (vT = -1.5 v )  using the principle 
described above. First, dc measurements were made and then 
s-parameters were measured (on wafer) over the entire operat- 
ing range of bias voltages (161 bias points, V,, = -3.  . .0.75 

Aii( t )  = V, V d s  = 0 .. . 5  V) and frequencies (0.1. - .  18.1 GHz). 
AiZ(t) = . A ~ i ( t )  + . A’~z( t )  . (38b) Parasitics were extracted with the help of the measurements 

(38a) . Avl(t) + a”?iZ A ~ 2 ( t )  
’$v 

1 

on cold FET and Chebyshev expansions were fitted on the 
y-parameters of the intrinsic FET. 

small-signal model, consisting of Chebyshev polynomials, 

Writing the spectra of the derivative waveforms as h;j, the 

of convolutions 
in the frequency domain can be written with the help In order to get an impression of how well the bias-dependent 

represents the measured frequency and bias characteristics of 
the FET, s-parameters of the model, including the parasitics, 
were calculated at each bias point over the entire frequency 

Ai1 = h l l *  Av1+ hl2 * Avz 
Ai2 = h21* Av1+ h 2 2  * Av2 . 

(39a) 
(39b) 

range from 0.82 to 18.1 GHz. At each point m = 1,. + . ,2737 
(161 bias points x17 frequencies = 2737 points in total) 
an error vector As,,(m) was calculated from the measured 

Each term h,, consists of zeroth and higher order terms, up 
to the desired level 

( s,, (m))  and from the model calculated ( si, (m))  s-parameters h,, = h!:) + f2 . h!:) + a2 . h!$ + . . . . (40) 
A ~ , j ( m )  = ~ i j ( m )  - ~ : j ( m )  

i , j  = 1 ,2  m= 1,2 , . . . ,2737 . (44) Calculating the convolutions from matrix products, as in (15), 
we get 

Underlining here, as before, indicates that in the corresponding 
vectors and matrices the real and imaginary parts are written 
as real numbers, instead of the normal representation with 
complex numbers. We can now write the resulting change in 
the error vectors from (37). The corrections to the voltages 
for the next iteration Av1, Av2 are obtained by requiring that 
this change cancels the error vectors of the current iteration 
as shown in (42) at the bottom of the page. The matrix on the 
right-hand side is the Jacobian J. By combining the error and 
voltage vectors into single vectors E and Av, the correction to 
the voltages is calculated by solving the set of equations 

(43) 

This way of constructing the Jacobian is remarkably simple 
and part of the calculations needed are in fact already done 
when evaluating the currents from (32) and can be simply re- 
used here. The transformation “N” in (41) is very fast, since 
precalcuated index vectors are used, as was discussed earlier. 
Overall, in all the cases considered up to now, the additional 
computer time required for construction and inverting the 
Jacobian has been shorter than the time required for the actual 
evaluation of the nonlinear functions. 

The following statistical quantities were then calculated for 
each s-parameter. 

0 ABS.ERR average magnitude of the error vector. 

0 MAX.ERR maximum absolute error 1 As,, (m)I. 
0 STD.DEV standard deviation of lAs,,(m)l. 
0 REL.ERR average relative error lAs,,(m)l/ls,,(m)l. 
The effect of including higher order terms in (26) was 

first studied. The first entry in Table I, marked with (a), 
shows the statistics of the approximation errror with terms 
up to order 5 included in the series. Each y-parameter was 
approximated with a double Chebyshev expansion with the 
maximum degree K = L = 12 which is sufficiently high to 
accurately describe the bias-dependence of the y-parameters in 
most bias points. Taking into account the very wide bias range 
(from far below cutoff to strong gate conduction), the average 
errors are very small, with typically 3% approximation error in 
the s-parameters. The maximum errors are greater, mainly due 
to the fact that the maximum degree of 12 is not sufficient to 
accurately represent the exponential nonlinearity of the gate 
junction. 

The next lines in Table I, marked with (b), show the 
error statistics when only the static and first order dynamic 
elements are included in the series describing the frequency- 
dependence of the y-parameters, Le., the admittances of the 
intrinsic FET are modeled with a parallel connection of a 
nonlinear capacitance and conductance, as is done in the Root 
model [lo]. Again the degree of the Chebyshev expansions 

I (m) I. 
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(b) 

(c )  

TABLE I 

CASES: (a) WITH HIGH ORDER ELEMENTS UP TO ORDER 5 INCLUDED, (b) 
WITH ONLY ZEROTH AND FIRST ORDER ELEMENTS INCLUDED, AND (c) 
SAME AS CASE (b) BUT USING TRUNCATED CHEBYSHEV EXPANSIONS 

STATISTICS OF THE SMALL-SIGNAL MODELING ERROR IN DIFFERENT 

0.036 0.052 0.094 0.554 

0,054 0.068 0.124 0.064 

is 12. We can see that, while the errors are still small, the 
average errors have increased by a factor of two to three due 
to the frequency-dependence of the real and imaginary parts of 
the intrinsic y-parameters. This is also demonstrated in Fig. 6 
which shows the measured and modeled s-parameters at a 
single bias point. In Fig. 6(a) all the higher order elements 
up to order 5 are present and in Fig. 6(b) the model consists 
only of the zeroth and first order elements. It is apparent that 
the simple model with only parallel nonlinear RC elements is 
sufficient at lower frequencies (below 6 GHz), while it cannot 
accurately model the variation of sll, s21 and 522 at higher 
frequencies. 

Since the mixer measurements of the next chapter were per- 
formed at low frequencies with RF and LO around 1 GHz, the 
simple model without higher order elements was considered 
sufficient. This also helps in minimizing the computer time 
which is an important factor in mixer intermodulation analysis 
where the calculations tend to be very time-consuming. For 
example, the model used in Fig. 6(a) with up to fifth-order 
elements requires three times as many convolution operations 
as the simple model used in Fig. 6(b). The adopted simple 
model can be drawn as in Fig. 7, where the g-parameters of 
the intrinsic FET are represented with the branch admittances, 
each consisting of a parallel connection of a nonlinear conduc- 
tance and a nonlinear capacitance. This way of presenting the 
large-signal model is not necessarily required, the measured 
y-parameters could be handled directly. However, this circuit 
representation is widely used and the circuit elements can be 
readily associated with physical characteristics of the device. 

Using high-degree Chebyshev expansions in the circuit 
analysis would be wasteful since comparable accuracy can 
be obtained with lower degree expansions with much less 
computations. Consequently the next step is to decrease the 
degree of the Chebyshev expansions as much as possible 

@) 

Fig. 6. Effect of the higher order elements in the model with measured 
(squares) and modeled (dots) s-parameters 1 to 18 GHz. In (a) orders up 
to 5 are included. In (b) only the zeroth (= conductance) and first order (= 
capacitance) elements are included. V,, = -1 0 V and Vd, = 2.5 V. 

M b  
Fig. 7. 
simulations. 

Small-signal circuit model for the intrinsic FET used in the mixer 

while keeping the approximation error acceptable. After some 
experimentation it was found that the values in Table I1 give 
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TABLE I1 
SELECTED DEGREES OF CHEBYSHEV EXPANSIONS 

40 501 
30 

20 

10 

0 

- 1 0 2  
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 

vds (VI 
Fig. 8. From the measurements extracted (squares) and with the Chebyshev 
expansions modeled (lines) dependence of the transconductance on the bias 
voltages. 

an acceptable approximation error. Those elements which de- 
scribe the gate conduction ( 19, gf., gfd), require large number 
of terms in the Chebyshev series. However, since they are 
mainly controlled by a single voltage (wl and w1 - WZ), single 
Chebyshev expansions were used to describe them. In fact, it 
was found that the most difficult term, gfd, is not required 
at drain voltages u2 > 0.3 V. In the calculations of this 
work this was always the case and consequently g f d  was 
left out of the model. Again the s-parameters of the model 
were calculated at each of the 2737 points and compared to 
the measured s-parameters. The results are shown on the lines 
marked with (c) in Table I. The accuracy of the approximation 
can be visualised from Fig. 8 which shows, as an example, the 
bias-dependence of the transconductance, as obtained from the 
measurements and from the model with truncated Chebyshev 
series. 

Thus we have arrived at the coefficient matrices H::) 
for each of the elements in the small-signal bias-dependent 
model. The large-signal currents are calculated from the line 
integrals (28) and we have to determine the coefficient ma- 
trices integrated over one of the controlling voltages, e.g., 
Hi:;. In principle, the line integrals should be independent 
of the integration path. However, the small-signal functions 
are generated from measurements through truncation of the 
Chebyshev expansions and therefore always contain some 
amount of error with the result that the condition of integra- 
bility is not exactly met. In order to get an impression of the 
magnitude of this problem, a test case was analysed with the 
FET driven with a moderately strong signal (+3 a m )  using 
two different paths of integration. The current waveforms were 
found to be almost identical, the main difference between 
the two integration paths was a small difference in the dc 

4,  . . . . . . . . . . . . . . .  

.r( 2 - 6 :  

A Measured Va.=4.0V 
U 

-1.8 -1.4 -1.0 -0.6 

Gate voltage V,, (V) 

(a) 

2, . . . . . . . . . . . . . . . ,  
h 

z -8 

: -10 

z -12 

m 

u 
-14 

-2 
I 

0 2 4 8 6 1 0 1 2 1 4  
LO power PLo (dBm) 

(b) 

Fig. 9. Comparison of the measured (symbols) and simulated (lines) con- 
version gain of the mixer. (a) Shows the dependence on the bias voltages, and 
(b) shows the effect of the local oscillator power. 

drain current. This gives an indication that the condition of 
integrability was quite closely met. However, this question 
certainly required further investigation in the future. 

VII. MEASURED AND CALCULATED RESULTS 

The constructed large-signal model was then used to simu- 
late mixer measurements which were made on wafer using the 
same FET chip, with both the drain and source terminated to 
50 R. The effect of the bias voltages and local oscillator (LO) 
power on the conversion gain ( ~ R F  = 0.8 GHz, f ~ o  = 0.9 
GHz) were measured around the experimentally found best 
operating point V,, = -1.3 V, PLO = 6 dBm at drain voltage 
V& = 2.5 V. These measurements were simulated with the 
frequency-domain algorithm with three harmonics of RF, five 
harmonics of LO and intermodulation products up to order 
five taken into account, or with 27 frequencies in total. Fig. 9 
shows both the measured and simulated results. We can see 
that the effects of bias voltages and LO power are accurately 
predicted by the simulation. 

Finally, mixer intermodulation measurements were made at 
the same operating point by sweeping the power level of two 
closely (5 MHz) separated RF tones and observing the power 
levels of the IF and third-order intermodulation products on 
spectrum analyzer. Again, the measurement was Simulated 
using the frequency-domain method. Three harmonics of the 
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Fig. 10. Measured (symbols) and simulated (lines) IF and IM levels at the 
output of the mixer. 

two RF signals, five harmonics of the LO and intermodulation 
products up to order five, or 104 frequencies in total, were 
taken into account. In order to be able to extend the simulation 
to relatively high power levels, i.e., past saturation of the 
IF, it was necessary to widen the normalization range of the 
gate voltage to - 5 .  . .0.8 V by extrapolation. Measured and 
simulated results are shown in Fig. 10, and again we can notice 
excellent agreement. The computer used in all the calculations 
was a 486 machine with 8 Mbyte RAM. 

VIII. CONCLUSION 

An analysis method has been presented that extends the 
applicability of the frequency-domain methods to strongly 
nonlinear circuits. This was made possible by the use of 
Chebyshev expansions to describe the nonlinear functions. 
Nonlinear functions are evaluated directly in the frequency 
domain with the three-term recurrence formula of orthogonal 
polynomials. This procedure is numerically stable so that 
high-degree expansions can be employed to describe strongly 
nonlinear functions. 

A novel frequency-domain modeling scheme for nonlinear 
devices has been developed. The model is inherently self- 
consistent due to the measurement-based construction: The 
large-signal currents are directly constructed from small-signal 
y-parameters through contour integration. The model has 
the advantage that the frequency-dependence of measured 
small-signal parameters can be described as accurately as 
desired. The model consists of polynomials, therefore, all the 
derivatives of interest exist and are continuous. Frequency- 
domain construction guarantees inherent accuracy in describ- 
ing frequency-dependent characteristics, like gds,  of the non- 
linear devices. 

The analysis method and modeling approach have been 
experimentally verified through excellent correspondence of 
the measured and simulated results on a monolithic MESFET 
operating as mixer. The efficiency of the frequency-domain 

method has been demonstrated by analysing the intermodula- 
tion distortion of the mixer with three independent tones and 
over 100 frequencies in total, driven past saturation with strong 
RF signals, on a personal computer. 
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