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2–20-GHz GaAs Traveling-Wave Amplifier

YAL~IN AYASLI, MEMBER, IEEE LEONARD D. REYNOLDS, JR., JAMES L. VORHAUS,

AND LARRY K. HANES

,4s,tract —Skgle-stage and two-stage GaAs traveling-wave amplifiers
operating with flat gain responses in the 2-20-GHz freqnency range are
described. The circuits are realized in monolithic form on a O.1-mm GaAs
substrate with 50- Q input and output lines. Complete gate and drain dc bias

circuitry is included on the chip. By cascading these amplifier chips, a

30-dB gain in the 2-20-GHz range is demonstrated, with 9+ l-dB noise
figure,
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I. INTRODUCTION

I N DISTRIBUTED OR traveling-wave amplifiers, the

input and output capacitances of electron tubes or tran-

sistors are combined with inductors to form two lumped-

element artificial transmission lines, These lines are cou-

pled by the transconductance of the active devices [1]-[4].

In this work, we describe one-stage and two-stage travel-
iruz-wave amplifiers which operate in the 2–20-GHz

fr~quency rm~e [5]. The

the gate and drain lines

lines loaded periodically

amplifiers are truly distributed;

are

by

two microstrip- transmission

GaAs FET cells. The basic
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structure and fundamental design considerations have been

reported previously [4]. In this work, the effects of gate and

drain bias circuitry are also included in the design consid-

erations.

H. AMPLIFIER DESIGN CONSIDERATIONS

A simplified schematic model for the traveling-wave

amplifier gain stage is shown in Fig. 1. In this amplifier,

microstrip lines periodically loaded with the complex gate

and drain impedances of the FET’s form lossy transmis-

sion-line structures of different characteristic impedance

and propagation constants. The resultant effective input

and output propagation structures, which will be referred

to as the gate and drtin lines, can be modelled as in Fig. 2.

In this first-order analysis, the effect of the drain-gate

feedback capacitance is neglected.

Approximating the gate and drain lines as continuous

structures, a gain expression for the traveling-wave ampli-

fier with n cells can be derived as follows [4];

2 2 [exp( – aglgn)–exp(– adldn)]z
~_ g.zo

4
(1)

(aglg - adld)2

This expression shows that the gain per stage of traveling-

wave amplifiers does not monotonically increase with

frequency. In fact, once the upper frequency of operation is

determined, there exists an optimum value for n, and

therefore for the total gate periphery, that can be effec-

tively employed in a single-stage design. This maximum

usable gate periphery and the maximum gain that can be

expected from a single-stage amplifier is determined by the

parameters of the discrete FET to be used in each cell,

given the maximum frequency of operation.

We have built the amplifiers around 150-pm gate periph-

ery devices and determined that the four-cell structure

represents the optimum design for covering the 2–20-GHz

band, predicting a 5.5-dB small-signal gain per stage.

The RF voltage distribution along the gate line at 20

GHz is shown in Fig. 3. Note that the RF voltage falls to

64 percent of the input voltage at the third and fourth

FET’s. Adding a fifth FET, therefore, does not contribute

to the gain at the high end of the band. Comparison of

actual calculated gains for the four- and five-cell designs in

Fig. 4 illustrates this point clearly. Although the five-cell

design has about l-dB higher gain at low frequencies, it

cannot maintain that gain at the high end. Hence, we

believe that for the 0.8-pm vicinity gate length 150-pm

FET’s used in the design, the optimum use of FET periph-

ery calls for four cells, resulting in 600 pm of total gate

periphery per 5.5-dB gain stage.

Another problem that has to be addressed in determin-

ing the limits of the upper operating frequency is the bias

circuit requirements. Designing an on-chip bias circuit for

monolithic traveling-wave amplifiers with bandwidths over

several octaves without degrading their flat gain perfor-

mance represents a severe design problem.

Distributed transmission-line sections exhibit several res-

G,
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Fig. 1. Schematic representation of a four-stage FET traveling-wave
preamplifier.

0 I

Fig. 2. Simplified equivalent circuit diagram of a GaAs FET traveling-
wave preamplifier.
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Fig. 3. Relative RF voltage distribution on the gate line at 20 GHz
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Fig. 4. Comparison of gain predictions for four-cell and five-cell de-
signs.
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DESCRIPTION OF CIRCUIT COMPONENTS
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B1 : Gate dc bjas twmmal

B2 Dr.,. dc b,.. te.mi”al

Components wtth a bar on top refer to the second stage

Fig. 5. Schematic circuit design for the single-stage small-signaf ampli-
fier, with gate and drain bias circuits included.

onances or impedance variations as frequency of operation

is varied so that, for example, what may be a short trans-

mission-line section at 2 GHz can become over a wave-

length long at 20 GHz.

We have addressed this problem in our 2-20-GHz

amplifier development work. The basic circuit diagram for

an amplifier without the bias circuitry appears in Fig. 1.

Both the gate and drain lines need to be terminated

by complex impedances, as shown inside the dashed-line

rectimgles. In our approach, the complex terminating im-

pedances are replaced by the circuits shown inside the

dashed-line rectangles in Fig. 5. These circuits perform the

following three functions.

1) They present the correct complex impedances to the

gate and drain lines, respectively.

2) They isolate the de-bias ports B1 and B2 from RF

signals. It is most difficult to achieve isolation at the low

end of the frequency band because of the limited w.iue of

inductances and capacitances one can realize monolitlii-

tally. To illustrate this point, the isolation performance of

the drain bias circuit is plotted in Fig. 6. Although isola-

tion decreases steadily toward 2 GHz, we were able to
obtain a minimum of 17-dB isolation and still limit the

largest capacitor value to 10 pF.

3) These circuits allow the dc currents to pass without

power dissipation. This requirement is not necessary for

the gate bias circuit, and therefore series resistances are

allowed there. These resistances stabilize the circuit at very

FREQUENCY (GHz)
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Fig. 7. Predicted performance of the single-stage 2-20-GHr amplifier.
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Fig. 8. Schematic circuit design for the two-stage small-signaf amplifier.

Description of the circuit components is identical to Fig. 5.

low frequencies and inhibit any tendency toward bias

circuit oscillation.
Fig. 7 shows the predicted performance of the single-stage

amplifier, including the effect of bias circuitry. The gain is

5.5 +0.5 dB, and both the input and output return loss are

better than 10 dB across the full frequency band.

The basic single-stage design is used as the building

block for the two-stage design, as shown in Fig. 8. Because

each section is well matched for the 50-fl system, a com-

plicated interstage matching circuitry is not required. Gate

and drain bias circuits of each stage are connected to the

same dc gate and drain bias ports, respectively. In this

connection, capacitances C3 and C5 are shared between the
two circuits. The sum of all the capacitors in the circuit is

less than 56 pF for the two-stage. The dc blocking capaci-

tors are included in series with the drain output RF line to

allow direct cascading of individual chips, The dc blocking

capacitors have 2-pF values, and the maximum value of

any capacitor used in the circuit is 10 pF.
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Fig. 9. Calculated performance of the two-stage 2–20-GHz amplifier.
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Fig. 10. Comparison of different doping levels for the predicted two-
stage amptifier design.

The calculated performance of the two-stage amplifier is

shown in Fig. 9. The gain is 11+0.5 dB, and the input, and

output return loss is around 10 dB across the full band.

With an 11-dB gain per two-stage amplifier, the mini-

mum of 34-dB isolation that is expected through the com-

mon bias circuitry is quite satisfactory. The performance of

the amplifier has been checked with the full circuitry

shown in Fig. 9 for any sign of feedback effects in and

outside the design band.

We have also examined the effect of channel doping on

the amplifier performance, the original circuit optimization

employed on an FET model with 1.5 X 1017 cm– 3 doping

level. If the FET equivalent circuit is scaled to 2 x 1017
cm – 3 and inserted in the design without other circuit

changes, no degradation in performance is observed. Only

the gain increases, about 1 dB, representing the increased

g~. The insensitivity Of the design–to–channel doping iS a
good indication of the stability of the circuit. Fig. 10

compares the performances of two different doping levels.

III. CIRCUIT DESCRIPTION AND EXPERIMENTAL

RESULTS

The single-stage circuit is realized on a 2.2X 2.7 mm

(86 X 106 roil) chip (Fig. 11). There are four FET cells, each

with two 75-~m width gate fingers, for a total gate periph-

ery of 600 pm.

Fig, 11. Single-stage, 2-20-GHz amplifier chip.

Fig, 12. Layout for the 2-20-GHz amplifier 2 x 75-pm discrete FET,

Fig. 13. Two-stage preamplifier chip,

The discrete FET layout is shown in more detail in Fig.

12; note that gate and drain pads are made large enough to

allow automatic dc probing. In these devices, the gate

length varied between 0.8 and 0.9 pm. The circuits are

fabricated using our standard MMIC technology, which

has been described in detail previously [6]. All capacitors

are thin-film Si ~N4 and the resistors are thin-film titanium.

The circuit shown schematically in Fig. 8 is realized on a

single 2.2 x 5.5 mm (80X 216 roil) chip (Fig. 13). Total gate

periphery is just double that of the single-stage amplifier.

The measured performance of the single-stage amplifier

is presented in Fig. 14. Gain is 6 + 1.5 dB in the 2–22-GHz

frequency range.

We have found the measured gain flatness to be typically

in the + l-dB range over the 2–20-GHz frequency range.
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Fig. 14. Experimental performance of the 2-22-GHz single-stage travel-
ing-wave amplifier.
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Fig. 16. Performance of the two-stage preamplifier ( V~ = O V).

Gain flatness is i-0,5 dB on our computer simulations. The

best performance in terms of gain flatness measured so far

is +().5 dB between 2 and 20.6 GHz, as shown in Fig. 15.

Input and output return losses are generally 10 dB or

better across the band. On some chips, however, we have

measured return losses as low as 7 dB at certain frequen-

cies.

The measured performance of the two-stage amplifier

with V~ = O V (Fig. 16) shows gains in the 11 –13-dB range.

Isolation of the input from the output is better than – 50

dB at the low end, and better than – 30 dB at the high end
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Fig. 17. Harmonics of 2-GHr input signal (F’,n = 3 dBm).
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Fig. 18. Harmonics of 2-GHz input signal at 3.5-dB gain compression
(P,n =12.5 dB).

of the frequency band. Fig. 16 also shows input and output

return loss. Output return loss seems higher than both the

predicted value and the measured single-stage results.

Both the single-stage and two-stage designs include the

full gate and drain bias circuitry plus the output dc block-

ing capacitors on the chip. Therefore, the flat gain re-

sponses we have measured have the additional significance

that the bias circuitry is also functioning properly, without

producing resonances or absorption of power across such

an extremely wide band.

No data on third-order intermodulation products is

available at present for 2–20-GHz amplifiers. However,

harmonics of the input signal were recorded for the two-

stage preamplifier. For a 2-GHz input signal, all harmonics

up to the tenth are in the passband of the amplifier. Fig. 17

shows these higher harmonics for a 2-GHz input signal

below the gain compression of the amplifier (Pi. = 3 dBm),

and Fig. 18 shows the same at more than 3-dB gain

compression (Pi. =12.5 dBm). Even at high gain compres-

sion levels, the second harmonic component is 19-dB below

the carrier, representing excellent linearity.

We have also measured the noise performance of the

amplifier. Fig. 19 shows the noise performance of the

single-stage amplifier. The noise figure is 7 ~ 1 dB across
the full 2–18-GHz frequency band at maximum gain con-

dition. This noise figure includes the input dc block and jig

losses.
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Fig. 19. Single-stage 5-dB gain preamplifier noise performance
(VG=OV).

Fig. 20. Cascaded 2–20-GHz amplifier which achieved 30-dB gain.

Fig. 21. Cascaded amplifier performance.

To demonstrate that traveling-wave amplifiers can be

cascaded and that 30-dB gains in the 2–20-GHz band are

feasible, we have cascaded six preamplifier stages. We are
pleased to report that we have achieved gains around 30

dB across the full 2-20-GHz frequency band. The cascaded

amplifier chain (Fig. 20) consists of two single-stage and

two two-stage preamplifier chips, cascaded in separate jigs.

The performance of the amplifier is shown in Fig. 21. Gain

performance is around 30 dB with ~ 4-dB gain ripple. We

believe that some of the gain ripple is contributed by the
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Fig. 22. Noise figure performance of the 30-dB cascaded amplifier. Jig
and dc block losses are not taken out.

jigs and the transitions employed in cascading, Input and

output return loss is better than – 6 dB.

The noise performance of the amplifier is also measured.

The data shown in Fig. 22 indicates a noise figure of 9 + 1

dB in the 2–18-GHz frequency band. This noise figure

includes the input dc block and jig losses. The measure-

ment was performed at maximum gain condition. We have

not observed significant improvement in the noise figure

by biasing the gates negatively.

IV. CONCLUSION

Extremely wideband traveling-wave amplification is

shown to be possible with GaAs monolithic technology.

Decade-band 2-20-GHz s@le- and two-stage GaAs

traveling-wave amplifiers with 6- and 12-dB flat gains are

realized in single-chip form with full on-chip dc biasing

circuitry and dc blocking capacitors. The initial experimen-

tal results are in excellent agreement with the theoretical

predictions.

By cascading these amplifiers, a 30-dB gain across the

2–20-GHz frequency band is achieved with a noise figure

of9+ldB.
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