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Finally, the transform of l?O(u) of (70) is

J
.

()RO(U) exp (j%uz)d fl
—m 27r

= exp(–.SOz) oexp (Aaz) X [eq. (168) with r-m+~] (169)

yielding (108) and (109).
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Optimum Coupling for Random Guides with

Frequency-Dependent Coupling

D. T. YOUNG, MEMBER, IEEE, AND HARRISON E. ROWE, I?ELLOW, IEEE

Afssfract-We obtain exactly the covariance of the signal-signal

and signal-spurious mode transfer functions of the coupled line equa-
tions with two forward-traveling modes, white random coupling with

statistically independent successive values (e.g., white Gaussian or
Poisson coupliig), and a coupling coefficient that varieb with the fre-
quency of the signals on the line. No perturbation or other approxi-
mations are made in this work. Time-domain statistics for the cor-
responding hpulse responses are obtained for moderate fractional
bandwidths.

These results are extensions of a similar treatment for frequency-

independent coupliig coefficients, given in a companion paper. If the
coupliig were independent of frequency, the signal dktortion would

ultimately decrease as the coupling increased, approaching zero as

the coupling approached infinity. The frequency dependence of the

coupling coefficient prevents the distortion from approaching zero;
the optimum coupling, which achieves minimum signal distortion,
is independent of guide length.
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Millimeter waveguides and optical fibers with random straight-

ness deviations have coupling coefficients inversely proportional to

the frequency. The above results yield the optimum random straight-
ness deviation for such a guide.

More forward modes can be treated in a straightforward way by
more complicated calculations.

1. INTRODUCTION

w

E STUDY exactly the coupled line equations for

signal and spurious modes (O and 1) traveling in

the forward direction [1]:

I,’(z) = – I’,I,(Z) + jc(z)I,(z)

subject to the initial conditions

10(0) = 1 11(0) = o (2)

with coupling coefficient c(z) proportional to a random
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geometric imperfection d(z)

c(z) = cd(z). (3)

d(z) is assumed stationary with symmetric probability

density; c?(z1) and d(zz) are assumed statistically inde-

pendent for Z1#zz. d(z) is consequently white, with (two-

sided) spectral density denoted by DO:

(d(z + r)d(z)) = DO.6(r).

A special case of interest is white Gaussian

zero mean. The loss and phase constants are

ro = all + j~o rz = al +.j~l

and the differential loss and phase are

AI’= rO– I’l=Aa+jA@

Aa=ao–al~O

A~=@o–~l

(4)

d(z) with

(5)

(6)

as before. Time dependence exp (j2~ft) is assumed. Aa

must be an even function of the frequency f, A/? and C’

odd. The application of this model to real transmission

systems, such as millimeter waveguides [4] and optical

fibers [5], and the physical interpretation of the solu-

tions to these equations are discussed in [1].

We define [I]

GO(Z) = exp (+ r,z). 1O(Z)

G,(z) - exp (+1’Oz). lI(z) (7)

as normalized signal–signal and signal–spurious mode

transfer functions, respectively. GO and GI are functions

of Afi, C, and Aa. We subsequently neglect the frequency

dependence of Aa. Since A@ and C are odd functions of

f, C is an odd function of Afl. Consequently, we write GO

and G1 as functions of A~, with Aa as a fixed parameter

not indicated by the functional notation. With this con-

vention, the covariances of GO and G1 are defined as [1]

l?o(~) = (GO(A13 + m)GO*(A6))

R,(a) = (GI(AD + u) G,*(A@) (8)

where the boldface notation for the R’s indicates that C

of (3) above varies with frequency. We distinguish the

special case of frequency-independent coupling, i.e.,

(14) of [1]

C = COsgnf

{

co, f>o,.— C’.a positive constant (9)1
– co, f<o,

by denoting the covariances for this case with (non-

boldface) R’s, as in (57) and (60) of [1]. This convention

is adopted because the R’s are conveniently found in

terms of the solutions for the R’s of Section IX of [1].

1 When A6 is the independent variable, it maybe substituted for j
in (9).

II. EXACT TRANSFER-FUNCTION STATISTICS

The analysis of Sections VI, VII, and VIII of [1]

remain equally valid for frequency-dependent coupling

coefficients-i. e., C is a general odd function off or A~,

rather than being given by (9) abov-with the sub-

stitution .S0-+S throughout:

S = C2D0 (lo)

in place of the second relation of (51) of [1]. Conse-

quently, the expected responses are from (56) of [1]:

(lO(Z)) = exp (– roz) exp [– (S/2)2] (ll(z)) = O

{Go(z)) = exp [– (S/2)2] (G,(z)) = O. (11)

For second-order transfer-function statistics, the anal-

ysis of Section IX of [1] up to and including (65) of [1]

remains valid with the above changes, and the nota-

tional modification discussed above

R~R (12)

to indicate that C is now a general odd function of Afl.

Equation (66) of [1] is modified by

(COS2 c,) ~ (COS Cmd,. COSCd,)

f (sin2 ci) * (sin Ccdi. sin Cdi) (13)

where

Co = C(AO + u) C = C(A@. (14)

Equation (67) of [1] is replaced by

c.’ -t C2
(COS Cod,. COS Cd,) = 1 – z (diZ) + . . .

CC2 + C2

=1– DoAz+ . . .
2

(sin Ccd~ sin Cd,) = C,C(di2) + . . “

= CoCDoAz + . . . (15)

to be substituted into (13). Let us define

,S. = Cq2D0 S = C2D0 (16)

as the coupling coefficient spectral densities correspond-

ing to the two values of differential phase in the defini-

tions for covariance (8). Let us further define their arith-

metic and geometric means as

SC+s c.’- + c’
Sa. —= Do

2 2

S, = dS,S = I C.yC I DO. (17)

Then replacing (68) of [1], we have for the covariances

of (8):

RO’ = – SaRO f S.R1

RI’ = + S,RO + (2Aa +ju – Sa)R1

Ro(u) ]Zso = 1 R,(u) ],sO = O. (18)
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The sign of ~ So is the same as the sign of CqC, i.e., the

upper (+) sign applies in the usual case where Afi+u

and Afi have the same sign (e.g., the two frequencies at

which the covariance applies are both positive). Under

the transformation

R. = exp [–(S. – Sg)z]. RO

RI = exp [– (S. – S,)2] .R1 (19)

(18) becomes

Ro’ = – SgRo h SgR1

R1’ = + S,RO + (2Aa + jr – Sg)RI (20)

which is identical to (68) of [1 ], for frequency-inde-

pendent coupling, with the substitution SO-M’,.

Consequently, the covariances for the normalized

signal–signal and signal–spurious mode transfer func-

tions (8) are (from (19) above and (70) of [1])

RO(U) = exp [– (S. – S,)2] ~exp [–S,2(1 – Z)]

[
. cosh (S~z~l + 22)

_——
sinh (S~z~l + Zz)

—2
<1 +2’ 1 (21)

RI(u) = + exp [–(S. – Sg)z]exp [–S,s(1 – Z)]

sinh (SQz~~+ 22)
.———

<1 + z’
— (22)

where

(23)

The coupling coefficient C is a general odd function of

A~ (or of frequency f); Aa is constant, independent of

Af?. S. and S, are defined by (17), So and S by (16) [and

(10)], Cc and C by (14), and Do by (4).

Equations (2 1)–(23) give exact solutions for the sec-

ond-order transfer-function statistics of the coupled line

equations [(1) and (2) ] with a white Gaussian geometric

imperfection 2 [(3) and (4) ] and a general frequency-

dependent coupling coefficient, without approximations

of any kind. For a coupling coefficient independent of

frequency (9), S = S. = S. = S,~SO and these results

become identical to those of (70) of [1]. The upper (+)

sign in (22) for Rl(a) corresponds to the usual case in

which the covariance is evaluated at two positive (or

two negative) frequencies. We consider only the signal–

signal response in the remainder of this paper, and so are

interested only in Ro(u) of (21), which contains no such

sign ambiguity.

RO(U) of (21) is a function not only of u, as indicated

by the notation, but also of A(3, since by (14), (16), and

z See [1, footnote 8].

(17), S. and S, depend on both Afi and IS. Consequently,

the signal–signal transfer function GO is not wide-sense

stationary, except in the special case of (9), frequency-

independent coupling [1 ]. Time-domain statistics are

simpler in the wide-sense stationary case [1]. We show

in Section 11 I that for moderately narrow fractional

bandwidths the A~ dependence of (21) is small, GO is

approximately wide-sense stationary, and consequently

the second-order time-domain statistics are readily

found in terms of the prior results of [1].

II 1. NARROW-BAND APPROXIMJiTIOIS

Restricting our attention to moderately narrow frac-

tional bandwidth, C will vary only slightly and linearly

with A@ over the range of interest. Denote the band

center by the subscript O:

Co = C(A~O) SO = Co’ DO. (24)

Then within a modest band

C(AB) = CO + C’. (AP – A/30) (25)

where

(26)

is the derivative of the coupling coefficient. Assume a

narrow enough band so that

:.(AO – APO) <<1. (27)

From (14), (16), (17), and (24)-(27),

c’ 2 so()S.– S,= ~ —.2
2

(28)

s,
[

=s0 l+:(a+2Ad–2ABo)
1

= so. (29)

We substitute these relations into (21). Equation (28),

substituted into the first exponent of (21), introduces

only a cr (and not AD) dependence. However, SO, appear-

ing in the second exponent and the hyperbolic arguments

of (21), is strictly a function of both u and A~; use of the

final approximation of (29), regarding S, as approxi-

mately constant by the narrow-band assumption of

(27), is required to yield an RO(a) approximately inde-

pendent of Afi. We thus obtain

Ro(u) ‘ex$(a%’lx’(u”’30)
subject to the restriction of (27). RO and Ro are, respec-

tively, the covariances for frequency-dependent and

frequency-independent [C’ = O, (9) ] coupling, R. is given

by (21) and (23) with S. = S,+SO, m-by (70) of [11.
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Thus the narrow-band assumption of (27) renders

GO approximately wide-sense stationary; the covariance

RO for frequency-dependent coupling is approximately

the product of a Gaussian function and the covariance

RO for frequency-independent coupling.

IV. TIME-DOMAIN STATISTICS

We summarize briefly some results of [1]. The nor-

malized sign al–sigc al impulse response is defined as

scc

g(,) = ()GO(AP) exp (–jrA@z)d ~ . (31)
—.

Both g ard GO are also functions of Aa, a constant pa-

rameter. In [I ], C was a constant parameter; in con-

trast, here C is an arbitrary (odd) function of A~. Define

()
.

P(T) = J ‘RO(U) exp (jraz)d ~
2T

(32)
—cc

as the spectral density of the (wide-sense stationary)

sigl~al–sign al transfer function GO with covariance Ro.

Afl is an arbitrary odd function of frequency j. The

transfer function of independent variable f is ~(~):

‘W) = Go(M). (33)

The impulse response in the time domain t is

Consider the dispersionless case, in which the propa-

gation cor stants are strictly proportional to frequent y,

i.e., the mode velocities are strictly constant and, conse-

quently, phase and group velocities are equal, being

denoted by ZJOal:d VI for signal and spurious modes, re-

spectively. Then

()A/?=– ~–~.27rj.
VI no

(35)

We assume for convenience that the signal mode is

faster:

Vo > VI. (36)

Let

(37)

be the delay between signal and spurious modes for a

length z of transmission line. Then

()Y(t)=$ +- (38)

relates normalized and actual impulse responses. ~ of

(31) is normalized time.

Let the transfer function be wide-sense stationary

with covariance

(R(V) i= (gj(j + .) S*(j)) (39)

independent off. Define

s

m

@(t)= (R(v)exp (–j27rtv)dv (40)
—m

as the spectral density of S(f). Cascade an ideal band-

pass filter of bandwidth 2B with ~(f). Then the ex-

pected value of the square of the envelope of the result-

ing impulse response is equal to 8B o(Y( — t) for large

B [1]. Consequently, (P( – t) is the normalized expected

squared envelope of the impulse response, abbreviated as

Pulse response. In the dispersionless case (35)–(37) give

(41)

[compare (38) ]. P( –~) is consequently the normalized

pulse response.

The modes in practical media may exhibit dispersion,

but may have essentially constant group velocities over

a limited band of interest. The above results of this sec-

tion then apply with VO and V1 replaced by the group

velocities v~o and VO1,and (38) replaced by

1

()

t
g+(t)= exp (j2rt. constant)” ~ g+ ;

where + indicates the positive frequency content [2];

since the envelope of g is unaffected by the exponential

factor, nothing else is changed.

Equations (30), (32), and the convolution theorem

yield

subject to the narrow-band restriction of (27), where

P(T) applies to the present case of frequency-dependent

coupling, P(T) to the prior results for frequency-inde-

pendent coupling [1]. From (109) of [1]

P(,) = exp (–S.2). 6(7) + P“(7)

1

.—

d

l+T
S.2. exp (–S.2) exp (– 2Aaz7) ————

—r

‘a’(’) = ] II(2SOZ<-T(l+, )), -1<,<0

[0, otherwise (43)

where 11 represents a modified Bessel function of first

order.

Equation (42) states that within the narrow-band

approximation the frequency dependence of the cou-

pling coefficient modifies the Pulse response for fre-

quency-independent coupling by convolving it with a

Gaussian function whose width is proportional to the

frequency dependence. For frequency-independent cou-

pling (9), C’= O and (42) yields P(7) =P(T), as it must

for consistency. Recall from (lo9) of [1] that the Pulse

response P ( —T) for frequency-independent coupling is

causal and time limited. The approximation to P( —~)

of (42) for frequency-dependent coupling does not
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strictly possess these properties because of the narrow-

band approximation, although the departures may not

be practically significant. Correspondingly, other results

of [1] for frequency-independent coupling no longer

strictly apply to the present approximation.

V. LARGE COUPLING, Soz>>l

We consider the single special case of large coupling

or a long line, SOZ>>l. Moreover, initially assume zero

differential loss, ACY= O [i.e., the signal- and spurious-

mode heat losses are identical (6) ]. The simplest ap-

proximations of [1] for the signal–signal transfer-func-

tion covariance ac d pulse response under these condi-

tions are given in (132) and (133) of [1]:

RO(U) = ~ exp [j(z/2)u] exp [— (z/8So)u2]

P(–7) = P“(-T)

— .—

=
d

~exp [–2.S.2(7 — +)2], 0<, <1

SOz >>1, Aa = 0, (44)

From (30), (32), and (42) we have for frequency-de-

pendent coupling

Ro(u) = ~ exp [j(z/2)a]

“exp{-[1+(2s0:n&”21

Soz >>1, Aa=O (45)

subject to the narrow-band approximation of (27).

P( – ~) of (45) represents a Gaussian pulse centered

on 7 = ~, of width proportional to

“= /:[1+2s&YJ

SOz >>1, ACY = O. (46)

For the dispersionless case [see (35)], (41) and (45) give

the pulse response @(t) in the actual time domain as

approximately Gaussian, centered around t= (T/2),of

width

“= “&[l+2+D

Soz >>1, Aa = O (47)

T being defined by (37) in the dispersionless case or

with the group velocities V90, vgl substituted for VO, VI in

(37) in the more general case, as the delay between sig-

nal and spurious modes for a length z of line. The pulse

length At is a good estimate for the signal-signal im-

pulse-response duration, as shown following (136) in [1].

Proper choice of coupling spectral density SO [see

(24) ] will minimize At; denote the minimum value by

At~i., the corresponding value of SO by ~OO@. Then

——
Ai~in
—= 2@l, SOZ>>l, Aa=O (48)

T

so.Pt = A , Soz >>1, A,a = O. (49)

2:

We have so far assumed zero differential loss Aa = O;

the signal loss is [see (5)–(7) ] ~ exp ( —2czOZ). Equations

(141)-(144) of [1] show the distortion is unchanged for

Aa <0 as long as

(50)

the location of the pulse moving from ~ = (t/T) = i

toward ~ = t = O as I Aa I increases. Thus (46)–(49) re-

main true if (50) is satisfied. There will be an additional

loss exp ( – I Aa I z), and, consequently, the signal loss

becomes i exp [ – (a~+al)z]; i.e., the signal shares the

heat losses of the two modes equally [1].

Other cases not discussed here-SOz~l, I Aa I YSO—

are similarly treated using the results of [1 ]. The present

results are of practical interest, and suffice to illustrate

the method.

VI. FREQUENCY-lNDEPENDENT COUPLING

For frequency-independent coupling (9), C’= O [see

(25) ], and the present results become identical to those

of [1]. Thus (48) and (49) become Atm, i. ‘= O and .SOOPt

. w ; for frequency-independent coupling, the duration

of the pulse response decreases monotonically to O as

the coupling So+ co. Setting C’= O in (47), and using (50):

Using (37), (51) may be

At=(;-;)&

Soz >>1, \ Aa I << S.. (51)

written alternatively as

c.’ = 0,s02>>1, [ Aa I << S.. (52)

fwhere we again substitute group velocities Vga, v91 or VO,

VI in the general case.

These results have been obtained in Section X1 of [1].

The pulse length is directly proportional to the square

root of line length, and inversely proportional to the

square root of the coupling coefficient spectral density.

Remarkably, the larger the (random) coupling and ge-

ometric imperfection, the smaller the signal distortion.

This behavior was first discovered by F)ersonick [3]



370 1E13ETRANSACT10NS ON MICROWAVE THEORY AND TECHNIQUES, JUNE 1972

using a different model and analysis. Other cases lying

outside theparameter ranges of (51) and (52) are readily

treated from (42) and the general results of [1] (i.e.,

approximations for .P(7) of (43) for various regions).

Including the frequency dependence of the coupling

coefficient prevents the signal distortion from approach-

ing zero. A case of practical importanc~white straight-

ness deviation—is treated in Section VI 1.

VI 1. RANDOM STRAIGHTNESS DEVIATION

We consider millimeter metallic waveguides [4] and

optical fibers [5] far from cutoff, with white straightness

deviation with independent successive values, e.g., white

Gaussian straightness deviation. The coupling coeffi-

cients are approximately inversely proportional to fre-

quency:

KI
c =—————

f

(53)

where K1 is a constant. The differential propagation

constant may be written (Appendix I of [1 ]):

(54)

where Kz is another constant. The delay between signal

and spurious modes is

VQ being the group velocities. Making narrow-band ap-

proximations, and denoting quantities at the band

center by the subscript or superscript O:
.-

‘O”z(++i)”i%‘5’)
2TT0

A@ = APO – — (f – fo)
z

where from (54) and (56)

K2 2rf OTO
AK?O=-=—

fo z “

From (53) and (54)

Then from (24)-(26) and (58)

c’ 1 z

Co= A~o= —27r,foTo

(57)

(58)

(59)

(60)

where TO is the midband delay between signal and

spurious modes for a line of length z, fo is the midband

frequency.

Substitution of (60) into (48)–(50) yields the mini-

mum pulse length At,.i. as

At~i. 2
—

TO
_=2qlg~:

~rfOTO

5’02>>1, IAc, I<<SO (61)

obtained for a coupling spectral density

SO”P’ = 22!! – ‘2 .
z 2jo

(62)

The useful RF bandwidth W’ is proportional to the

reciprocal of the duration of the impulse response, ap-

proximately At of (47). Let us define the constant of

proportionality by

w= :.; (63)

for later convenience. Then the maximum useful band-

width ~max corresponds to the minimum pulse length

At~i. of (61):

w

– 2==2&& ’64)
max

jo = ~.joTo

Comparing (64) and (61),

At~in Wmax
— .— .

To -fO
(65)

the maximum fractional bandwidth equals the minimum

fractional pulse length, for a coupling coefficient with

inverse frequency dependence.

The large coupling restriction Soz>>l of (61) guaran-

tees via (62) that

foTo >>1 (66)

i.e., the delay between signal and spurious modes must

be long compared to the carrier period. Thus from (61),

(64) and (65),

Atmin W~==
—–—<<1.

—

TO fo
(67)

This is consistent with the restriction of (27), which

using (57) and (60) becomes.

if–fol
j. <<1 (68)

i.e., the fractional bandwidth must remain small.

Finally, it is of interest to determine the optimum

straightness deviation spectral density. From (10), (24),

(53), (58), and (62)

Doopt . >

2K,2fo
(69)
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KI and K2 being the constants of (53) and (54). The

straightness deviation spectral density required for opti-

mum transmission is proportional to the carrier fre-

quency.

The above results establish the minimum pulse length

and maximum useful bandwidth that can be attained in

two-mode guide with white straightness deviation with

independent successive values, by varying the amount

of straightness deviation (and hence coupling). As the

coupling SOz increases from some moderate value much

greater than 1 to larger values, the pulse length At will

initially decrease according to (51), but will eventually

reach a minimum value given by (61), at a value of

coupling given by (62); correspondingly, the useful

bandwidth W will increase and reach the maximum

given by (64). The signal transmission can no longer be

indefinitely improved by increasing the coupling, as ob-

tained in [1] and the previous section with the coupling-

coefficient frequency dependence neglected. The mini-

mum fractional pulse length and the maximum fractional

bandwidth are equal, as shown in (65), and both are

small compared to 1. The more pulse shortening you

can get, the smaller the available fractional bandwidth;

the larger the available fractional bandwidth, the less

the possible pulse shortening. The minimum pulse

length increases and the maximum bandwidth decreases

as the square root of line length. If the optimum cou-

pling is too large to be obtained practically, then the

simpler results of (51) and (52) (for frequency-inde-

pendent coupling) may be used, but of course the

present results are required to know this. 1/SO repre-

sen ts a characteristic length in which power introduced

in one mode becomes approximately equally divided

between both modes [1]. The optimum coupling (62)

is independent of line length. The optimum geometric

imperfection (69) varies linearly with frequency, and is

of course also independent of line length.

The results of this section are appropriate to a much

wider class of imperfections than straightness deviation;

for example, general small deformations of metallic

guide (e.g., ellipticity, trifoil, etc.) have coupling coeffi-

cients with inverse frequency dependence as assumed in

(53) [4]. These results are restricted to the region where

the coupling coefficient and differential propagation

constant vary approximately inversely with frequency

(53) and (54), i.e., far from cutoff.

VIII. DISCUSSION

For the coupled line equations with a white geometric

imperfection (and hence white coupling) with inde-

pendent successive values, e.g., white Gaussian imper-

fection (and coupling), neglecting the frequency de-

pendence of the coupling, the transmission improves

indefinitely as the coupling (and geometric imperfec-

tion) increases. However, a frequency-independent cou-

pling coefficient violates causality in these equations

[1]. The present work includes the frequency depen-

dence of the coupling coefficient; this factor limits the

transmission improvement that can be obtained by in-

creasing the random coupling.

Suppose that more-or-less flat filters are used at both

ends of such a random guide, which has an impulse-

response duration At and corresponding bandwidth Was

given above, perhaps optimum or perhaps not. Best use

of the available frequency space dictates that the ter-

minal filter bandwidths be not too much greater than W.

It may seem surprising that the frequency dependence

of the coupling coefficient can become significant even

though the fractional bandwidth is small. The nor-

malized signal–signal transfer function may be written

from (153) and (1.54) of [1] and from (3) of this paper as

GO(Z) = 1 + S (–l)fiGo(fi)(z) (70)
n-1

G,(n)(z) =f:dz,~’’d~, o ~ (%.

. C’n. d($Jd(x,)d(xJ 0.. d(x,n)

.exp [~A~(XI— XZ+X3— X*+ . . . —*.z.)] (71)

where C is a general odd function of Ab, with narrow-

band behavior given by (24)–(2 7). The nth term repre-

sents the sum of all signals that have suffered exactly 2n

transitions between the two modes. The larger the cou-

pling and geometric imperfection d(x), the greater the

number of terms n that must be taken. The nth term is

proportional to Cz”; even a slight frequency dependence

of C will eventually become significant if n becomes

large enough. While (70) and (71) render the present

results physically plausible, it does not alppear easy to

obtain our present results directly from them.

The general results of the present work, stated in

(21)-(23), give the transfer-function COVa&UICeS with-

out approximation for arbitrary frequency dependence

of the coupling coefficient. The transfer-function sta-

tistics are in general nonstationary; since stationary

statistics are simpler to deal with, approximations were

made in subsequent examples to render the transfer

function approximately wide-sense stationary. More-

over, we neglected dispersion and assumed large cou-

pling SOz>>l, small loss I Aa I <<S0, and coupling coeffi-

cient dependence as that far from cutoff. None of these

approximations or assumptions are essential. Extension

to other regions of coupling and loss is accomplished by

convolution (42) with other approximations of [1] to

(43). Other restrictions probably can and should be

removed. Finally, the dispersion of the signal-mode

propagation factor exp ( –j/30z) removed in the initial

normalization of (7) has not been studied here, but is

equivalent to cascading a deterministic filter with the

present random transfer function.

The differential heat loss Aa = cq –al does not affect

the transmission distortion as long as \ Aa I <<SO, i e.,
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heat loss much less than coupling. It does, as noted in

Section V, affect the overall signal loss, which is

~ exp [ —’(aO+al)z], the signal sharing the heat losses of

the two modes for SOZ>>l [1].

This work may be extended to more forward spurious

modes (but not backward spurious modes), and to sys-

tems whose output is’ a combination of several modes.

We do not know if the present limitations on impulse-

response duration and bandwidth are fundamental or

whether equalization might improve things. The latter

possibility is suggested by the above discussion in con-

nection with (7o) and (71); for a given (large) coupling,

the significant terms will tend to cluster around a

specific value of n, and hence equalization might tend

to help, although it could obviously never be perfect.

A single value for the spectral density SOOPtof the cou-

pling coefficient (or Doopt of the geometric imperfection)

yields the shortest impulse response (and widest useful

bandwidth) for all line lengths. This result was unfore-

seen.
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Simplified Theory for Post Coupling Gunn

Diodes to Waveguide

JOSEPH F. WHITE, MEMBER, J.EEE

AZrsfract-There is a constant need for diode circuits employing

rectangular waveguide. Coupling of the diode to the guide by using
an inductive post is a popuJar method. The microwave circuit analysis

of the equivalent circuit has been explored by complete theoretical
analyses in the literature, but the results have been sutliciently dif-
ficult to apply that, in practice, recourse is often made to empiric

characterization. ThkI paper derives a simplified equivalent circuit
based on a small perturbation approximation. The method is verified
by experiment and is then used to evaluate a practical Gunn oscil-
lator cavity.

1. INTRODUCTION

c

OUPLING DIODES to rectangular waveguides

is a frequent requirement in the design of micro-

wave oscillators, detectors, and control devices.

In effect, a mode transducer is required to couple the

diode, which is essentially a lumped element with dimen-

sions small compared to a wavelength, to the dominant

TEIO mode whose fields are not nearly as concentrated

in space as those surrounding the diode.

High Q resonators are very practical in waveguide,

and this is advantageous with bulk-effect diodes whose

operating frequency must be stabilized. Post coupling
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The author is with Microwave Associates Incorporated, Burling-

ton, Mass. 01803.
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Fig. 1. Oscillator plan view.

the diode to the guide, as shown in Fig. 1, is common.

The problem for the designer is how to estimate what

load impedance will be experienced by the diode in this

network.

The equivalent circuit that we will use is shown in

Fig. 2. The reactance X. associated with the gap will be

neglected, and the conditions under which this approxi-

mation is valid will be discussed. The normalized im-

pedance ~,,1 can be calculated using transmission line

theory and published [1 ]– [3 ] or measured values for the

1 In this paper, a bar over a variable denotes that its value is nor-
malized to Zr, the waveguide impedance.


