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Abstract—We consider the coupled line equations for two-mode
random media in which both modes travel in the same (forward)
direction as a model for multimode millimeter waveguides and opti-

cal fibers, in which mode conversion at imperfections occurs pri-
marily in the forward direction. Some exact general properties
satisfied by the transfer function and the impulse response of such
a system are given for an arbitrary coupling coefficient. A random
stationary coupling coefficient with statistically independent succes-
sive values, and consequently a white spectrum (e.g., a white

Gaussian or a Poisson noise), permits exact determination of trans-
mission statistics; we obtain first- and second-order statistics in
the time and frequency domains. No perturbation or other approxi-

mations are made in any of the above results, which are obtained

directly from the coupled line equations. These results are used to
study signal distortion in long guides.

By straightforward extension of this work more complicated cal-
culations can treat more forward modes, but not backward modes
or nonwhite coupling coefficient spectra. In thk paper the coupliig
coefficient is assumed frequency independent, and under certain con-
ditions the signal distortion decreases as the mode conversion in-

creases. IXI practical cases the coupling coefficients are frequency
dependent and the above behavior is modified; the present work is

extended to this important case in a companion paper.

1. INTRODUCTION

flONSIDER the coupled line equations

L/ 1,’(2) = – I’d,(z) t jc(z)I,(z)

11’(2) = jC(Z)ro(Z) – rl~l(z) (1)

subject to the initial conditions

10(0) = 1

11(0) = O (2)

the’ denoting differentiation with respect to z. Equation

(1) describes a system of two coupled modes traveling in

the forward ( +z) direction, with propagation constants

I’o and r, and complex wave amplitude lo(z) and 11(z)

having time dependence exp (j2n-~t). The real coupling

coefficient c(z) has arbitrary functional form. 10 repre-

sents a desired signal mode and 11 an undesired spurious

mode. A unit signal is injected in the desired mode at

z = O (2); the output 1O(Z) is the complex signal transfer

function (output/input) of the length z of the line.

These equations have arisen in the study of various
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physical systems [1 ]– [3 ], such as circular electric mode

transmission in metal waveguides [4], [5] and optical

fibers [6], [7].

For example, long-distance millimeter waveguides

[4], [5] use the circular electric TE-01 wave as a signal

mode because of its low heat loss. Geometric imperfec-

tions, both intentional (i.e., bends) and unavoidable

(e.g., random straightness deviation, diameter varia-

tion, ellipticity, etc., due to manufacturing tolerances),

couple the TE-01 signal mode to other spurious prop-

agating modes, with potentially serious effects on the

signal-mode transfer function. Multimclde optical

fibers [6], [7] can exhibit similar behavior. In these

cases the most important spurious modes travel in the

forward direction (i.e., in the same direction as the

signal mode) under normal conditions.

Since exact solutions to these equations can be ob -

tained only in very special cases, perturbation theory

has been widely used for approximate treatment of

these equations [5 ]– [8 ]. Both deterministic and statis-

tical c(z) have been so studied.

The principal results of this paper are rigorous ex-

plicit solutions for the first- and second-order statistics

of the transfer function 1o(z) of (1) and (2)I, and of its

Fourier transform (the corresponding impulse response),

for stationary random coupling c(z) for which c(z1) and

c(zZ) are statistically independent for zl Z$ZZ,1 e.g., a

white Gaussian noise. This work is of value in studying

the region of validity of various perturbation theories

and in finding out what happens to signals in very long

transmission lines. The present matrix methods have

previously been used to treat active [9] and lpassive [10 ]

transmission lines or equivalent one-dimensional ran-

dom media, in which the spurious mode is, a reflected

wave, and to derive one of the results given here for the

present problem [11 ].

In addition, we present some general properties of the

transfer function 1O(Z) and of its associated impulse re-

sponse that hold true for arbitrary (nonstatistical)

coupling c(z).

All of the present results are exact, being obtained

directly from (1) and (2) without mathematical or

physical approximations of any kind. In particular, the

1 Such a c(z) is necessarily white, but not neceswwily C~aussian
(e.g., a Poisson noise).
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present results hold where perturbation theory fails.

Many extensions of these results—e.g., to more modes,

systems that sum the output amplitudes or powers of all

of the modes (as opposed to the present example where

the output consists of a single mode), coupling coef-

ficients of different form, and higher order statistics—

are readily found by the present methods.

II. NOTATION [8]

Normalize the transfer functions I,(z) and ll(z) of

(1) by

10(Z) = exp (– I’Oz) oGo(z)

II(z) = exp (– I’lz), Gl(z) (3)

i.e., by removing the corresponding propagation factors

for transmission through perfect guide (no coupling).

Introduce the real and imaginary parts of the propaga-

tion constants as

rO - ~0 +jBO rl = al + jfll (4)

(i.e., the a’s and ~’s are real). Define the differential

propagation constant and its real and imaginary parts as

Ar = rO– I’1= Aa+jA~ (5)

Aa=aO–al<O

A~ = PO – /31. (6)

Aa is assumed negative because the signal mode will

normally have less loss than the spurious mode. Then

(1) becomes

Go’(z) = jc(z) exp (AI’z) cGl(z)

G;(z) = jc(z) exp (– AI%). GO(Z) (7)

with initial conditions (2)

G,(O) = 1

G,(O) = O. (8)

The coupling coefficient c(z) in practical systems [4]-

[7] is proportional to some geometric imperfection,

here called d(z):

c(z) = Cd(z). (9)

d(z) might be displacement, slope, or curvature of the

guide axis, ellipticityof the guide, etc., depending on the

application.

Next

GO=l– A+jO. (lo)

The real quantities A and 8 denote the departure of

the real part of GO from unity, and the imaginary part

of Go, respectively. In the perturbation case, when GO

departs only slightly from 1, A s – Re In Go= loss and

0 = Im In GO= phase. For the general case studied here

these identific~~io~~ do not hold.

Finally, we require the Fourier transform of Go, de-

fined as (assuming that it exists)

f

m

gAa(T) = GO(Aa, A@) exp
—m (“j2rTc3)dE)

1
=_

s
“GO(Aa, Ap) exp (–j~Aflz)d(A&)

27r _m
(11)

for fixed line length z. The inverse transform is

S.G,(Aa, A@) = gA.(7) exp (jTA@Z)dT. (12)
—w

In (11) we have chosen the normalized quantity

(13)

as integration variable, rather than simply Ad, to nor-

malize the range of the transform variable ~ (see Section

IV). g4a(~) of (11) turns out to be the normalized im-

pulse response of the system under suitable conditions

[see Section V, (32) and (33)].

The normalized signal transfer function GO is more

convenient than 10 for some purposes.

III. APPLICATION TO REAL SYSTEMS

For fixed length z and fixed (arbitrary) geometric pa-

rameter d(z) (9), the normalized transfer function, GO

is a function of A/3, Aa, and C, while the normalized im-

pulse response g of (11) is a function of ~, Act, and C.

Alternatively, for fixed z and random d(z) with fixed

statistics, the statistics of GO are functions of A~, Aa,

and C, while the statistics of g depend on r, Acq and C.

We study below exact deterministic and statistical

properties of GO(A/3) and g(r), with Aa and C regarded

as fixed parameters. Application of these rigorous

mathematical results to practical guided-wave systems,

such as circular waveguide [4], [5] and optical fibers

[6], [7], involves physical approximations for several

reasons.

1) In a specific guide Aa, A/3, and C will be definite

functions of frequency f, and so are related. Aa must be

an even function off, A/? and C odd. However, for many

purposes the variation of Aa and C with f may be ne-

glected over suitably narrow bands. This approximation

motivates choosing A~ as an independent variable in

the subsequent mathematical analysis, neglecting the

variation of Aa, and taking C of (9) as

C = C~. sgnf

{

cl), f>o,
. Co a positive constant. (14)3

– co, f<o,

~ For white d(z) with independent successive values.
a When A@is taken as the independent variable, A@may be sub-

stituted for ~ in (14),
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2) Practical systems have many spurious modes.

Moreover the spurious modes travel in both (forward

and backward) directions.

Extension of the present analysis is required to re-

move these two types of limitations. Practical utility of

the present results clearly depends on the specific ap-

plication.

The phase constants L?O and 61 are in general non-

linear functions of frequency ~; therefore, Af? is also in

general a nonlinear function of j. A further approxima-

tion that is often useful is to regard A(3 as a linear func-

tion of ,f over a suitably narrow band. Recalling that

phase and group velocities of each mode are defined as

A~ will be approximately linear with j if the group

velocities are essentially constant over the band. Under

these conditions ~ is a normalized time variable. Ap-

pendix I gives the frequency dependence of A(3 for two

cases used as examples below.

IV. GENERAL PROPERTIES OF GO AND g

Assume that the geometric imperfection d(z) is some

fixed but arbitrary function and that the overall

length z of guide is fixed. Under these conditions

Go(Aa, A(3), the solution to (7) and (8), and its Fourier

transform gAa(T), defined by (11), have the following

properties, without approximation.

1) GO is analytic in the complex AI’ plane; i.e., Go has

no singularities for any finite A17.

2) gA~(~) is caLlsual; i.e.,

gAa(T) = 0, 7 <0. (15)

This implies that .4 and o are Hilbert transforms:4

() =-A (16)

where A denotes the Hilbert transform [12],

A(Aa, A@ = : A (As, A@ * +

1s@A(As, u)
=. —— dis

T —m Afi-u
(17)

* representing the convolution operator [12]. The in-

verse relationship is B
.4 =6+X, Z = ~lim~ --& J A(As, a)d(r (18)

–B

the constant ~ in (18) representing the dc component of

~, not recovered by the Hilbert transform, Equations

(15)-(18) are true for every (fixed) ASX.

4 Previously shown in the perturbation case [13]; the present re-

3) Go and g for any negative Aa are simply related to

the corresponding quantities for Aa = O:

gAa(7) = exp (Aazr)gO(r) = exp (– \ Aa I ZT)go(T),

Aa <0 (19)

where go(~) = gA. (7) I A.=0. Therefore,

Go(Aa, A@) = + Go(O, A@ *
\Aal:jAB’

A,, <0. (20)

Then

A(Aa, Afl) = ~ .4(0, A@ *
\Aal

Aa <0. (21)6
n- Aa2 + A/32 ‘

8(Aa, A/3) = ~ 0(0, @) *
]Aal

Aa: <0. (22)5
7r Aa2 + A/32 ‘

Increasing the differential loss (making Aa more nega-

tive) smooths out the transfer-function fluctuations by

convolution with a simple window function. The win-

dow function of (21) and (22) has unit area

sil : ~+lM_2 ‘(A6)=1;()
(23)

ACY

it becomes a unit impulse as Aa~O

as required for consistency in (21) and (22;).

4) GO(Aa, A@ is band-limited, i.e., determined by its

values at sample points

2am
Afire = —

z

by the relation

(25)

( L. ( 2=%’GO(ACY, AS) = exp j~w ~ GO AcY, ~) (–1)”

()A~z
sin7r ——-fi

27r
— (26)

~A/3z j

(—..‘n
= 2T )

since the normalized impulse response is time-limited,

gAa(~) = O, T<o, 7>1. (27)

5 Previously shown in the perturbation case [13]; the present re-
sults are general. suits are general.
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5) gAa(T) is red, and

GO(ACY, – A/-?) = Go*(Aa, AD)

A (As, – A@) = A (AcY, A/3)

(3(Aa, – A~) = –(3(AcY, A/3)BJ~li~2.-SO(Aa, a)du = O. (28)
g-w 2B –Z+

Introduction of the normalized variables [see (13)]

Aa.z Afiz
Q,~— /)=Z

27r
(29)

leaves the above results involving convolution (includ-

ing Hilbert transforms) unchanged in form.

These results are derived in Appendix II. Their

physical interpretation is discussed in Section V. They

are reflected in the statistical results derived in Sections

VIII-X.

V. DISCUSSION OF SECTION IV

We give a simple physical interpretation for the

mathematical properties of Section IV in the case dis-

cussed in Section III, dispersionless modes and fre-

quency-independent attenuation constants and cou-

pling coefficient; i.e., we assume A@ Kj (149), and Aa

(6) and CO (14) independent of ~, over the infinite fre-

quency range – ~ <f< cc.Of course, we have not dem-

onstrated a circuit model governed by (1) and these

assumptions.

Let the transfer function as a function of frequency

j be denoted by s..(j), related to GO of (3) by

%.(f) = Go(AcK, As). (30)

The impulse response f’A.(t) in the time domain and

SA.(fl are Fourier transforms:

Then using (149) the impulse response of (31) is related

to the normalized impulse response of (11) by

where

(32)

(33)

is the delay between signal and spurious modes for a

length z of transmission line. By (32) and (27) the im-

pulse response @As(t) is limited in duration to T s.

The coupling coefficient for an elementary length of

line is, from (9) and (14), jc(x)dx =j sgn j. COd(x)dti. A

unit impulse 6(t) traveling in one mode, incident on this

elementary mode converter, excites an amplitude

– C,d(x)dx . + (34a)

in the other mode ;Gsimilarly the wave — (1/trt) traveling

in one mode, incident on this elementary converter,

excites an amplitude

– C,d(%)dx. a(t) (34b)

in the other mode. Consider a unit impulse in the signal

mode incident on the coupled line described by (1) at

z = O. The integrand of (154), with c(z) replaced by (9)

and (14), corresponds to the partial impulse response

(in the signal mode for a line length z)

(

*1 —X2+. .. —X2.
8 t– T

z )

.exp [Aa(xl — X2 + . . . — Xz.)]

. c,’’k@)d(x,) . . . d(%). dx@, ..0 d%>

.X1> X2>. .$> X2. (35)

i.e., that portion of the input impulse that has made

exactly 2n transitions, from signal to spurious mode at

Xfn, ..., xl, X2 and from spurious to signal mode at

Xzn–l, . . . , x3, xl. Summing up all such contributions,

the total signal–signal impulse response is clearly causal,

time-limited, and real.’ Moreover (35) shows that for

Aa <0 the damping (exponential) factor is the same for

the response at a given time, whatever the number of

transitions 2n; stated differently, all portions of the

total impulse response arriving at time t have traveled in

the spurious mode for a total distance zt/T, indepen-

dently of n. Therefore, if the geometric imperfection

d(z) and the coupling c(z) are held fixed while the dif-

ferential attenuation Aa is varied, the impulse response

as a function of ACY is given as

@’A.(t) = exp (– I Aa 1 zt/T) g,(t), ACY ~ O (36)

corresponding to (19).

Equations (32), (33), (35), and (36), for the signal–

signal response, are true only if the assumptions of

(147) are satisfied and if CO and ACY are strictly inde-

pendent of frequency.

VI. MATRIX FORMUI.ATION

We now turn to the treatment of the coupled line

equations (1) for a stationary random coupling co-

efficient c(z) and geometric imperfection d(z) with in-

6 The inverse Fourier transform of -~ sgn j is 1/ret, the Hilbert
transform of $(t) [12].

7 In contrast, the signal-spurious mode response is obviously not
causal, from (34a). Consequent y, no circuit model can be devised
that yields (1). This nonphysical behavior ,arises because the coupling
coeficlent COof (14) has been assumed independent of frequency.
Nevertheless, a frequency-independent coupling coefficient is often
assumed, and the present results are useful approximations over
limited bands. Treatment of frequency-dependent CO is given in a
companion paper [20] as a simple extension of this work.
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. .

*

section is governed by (1) with c(z) = O:

10(Z–)

[1Il(z–)

[

exp (– rOAz)
.

cti

o exp(:I’Az)lEt:~ll” ‘3’)

ci.8(z-iAz) . The discrete converter is governed by the solution of (1)

with c(z) a 8 function. This has been obtained from the

(i-,i)Az iAz
solution to these equations for constant c(z) [.s ], i.e.,

l!

by setting c(z) = ci/A for a range of z of length A and

allowing A-O, yielding

ii

I w+ I ~o(z)
[::1= [;:::, ‘:::3E21 ’40)

Io(z-&)

m

Combining these relations and introducing matrix nota-

~ lI(z-) 1 /
tion,

II (Z-AZ) 11(Z)
~(z) = %(z)~(z – Az) (41)

(z!Az) (2!) Z

Fig. 1. Continuous line as limit of discrete sections,
where

dependent successive values, e.g., white Gaussian

noise. We first approximate the line by a discrete model,

obtained by dividing the line up into sections of length

Az and approximating c(z) in each section by a function

that permits exact solution of (1) within each section.

Suitable approximations are step or (Sfunctions because

(1) may be solved for c(z)= constant [1] or c(z)= con-

stant. 8(z) [5]. While step-function approximation for

c(z) has been used for a similar purpose [11 ], &function

approximation is used here because it is simpler [10].

The solution for the entire line may now be expressed

in terms of the known exact solutions for the individual

sections by matrix techniques. The different sections are

statistically independent because C(ZJ and C(Z2) are

assumed independent for all ZI #zz. Exact transmission

statistics for the discrete model can consequently be

computed by using Kronecker products [16]. Finally,

we allow Az*O, thus obtaining exact transmission sta-

tistics for (1).

Thus approximate the coupling c(z) in (1) by

(B/Az)

cd(z) = ~ c;.6(z — iAz) (37)
‘i=1

where 6 represents the unit impulse and

s<Az
Ci ~ c(Z) dz = C. di

(i–l)Az

siA z

d~ z d(z) dz. (38)(i–l)Az
The approximation becomes exact in the limit, i.e.,

c~(z) ~c(z) as Az~O. The ith section of the discrete model

consists of an ideal line section Az long with zero cou-

pling, terminated in a discrete (~-function) mode con-

verter of magnitude c~, as shown in Fig. 1. The ideal line

(42)
[1

fJ(z) = ;:”

[

exp (— I’OAz) cos c~ exp (— I’lAz)j sin c~
i%(z) =

1
(43)

exp (— 170Az)j sin CJ exp ( — I’lAz) cos ci

and ct is given by (38). The initial conditions of (2)

become

1

[1
~(o) = o . (44)

The solution to (41)–(44) and (38) should provide a good

approximation to the solution of (1) and (2) when Az

becomes small compared to the beat wave] ength, i.e.,

Az<<*=\ro~rll (45)

providing an exact solution as AzeO.

It proves convenient for some of the following calcula-

tions to normalize the above relations in a different way

than in (3). Define the column vector

G,(z) = exp (AI’z)G,(z) = exp (1’,z)l, (z) (46)

GO and G1 being defined in (3), Go is the normalized sig-

nal transfer function defined before, while the new

quantity G1 is different from G1 of (3). It seems natural to

refer to G1 as the normalized signal-spurious mode trans-

fer function. Define the matrix

[

exp (Ar. Az)j sin Ci
~(z) ~ :0: ‘i

1
(47)

I sm ci exp (Ar. Az) cos c;

and recall that c~ is given by (38). Then

5(z) = exp (– ro2)6@) %(z) = exp (– I’oAz) ~ (z) (48)



Fig. 2. Spectral density of coupling coefficient.

and (41 ) and (44) become

1
~(z) = ~(z)~(z – Az)

[1
6(0) = o .
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long enough so that different sections are statistically

independent in order that the subsequent statistical

analysis can be readily performed. The first requirement

leads to (45) and the second to the restriction Az>>l /pC.

Combining these relationships,

p.>> IAI’I. (53)

The following results for a strictly white coupling

(WC+ cc) will provide a good approximation for a low-

pass coupling spectrum (finite ,w in Fig. 2) if (53) is

satisfied.

(49)

Equation (49) is used below to obtain directly statistics

of the normalized (signal) transfer function Go (3).

VII. STATISTICAL MODEL

Assume that the random geometric imperfection d(z)

of (9) is stationary with symmetric probability density,

and possesses the property that d(zl) and d(zz) are sta-

tistically independent for Z1 +Z2. Consequently, d(z) has

a white spectrum (with infinite bandwidth), with spec-

tral density denoted by Do:

(d(z + {)d(z)) = DO.8({). (50)

6 represents the unit impulse. Assuming frequency-

independent coupling (14), the coupling c(z) (9) has

covariance

(C(z + {) C(z)) = S,. fi(f), SO = C02D0 (51)

and thus also a white spectrum, with spectral density SO.

Therefore, the c~ or di of Section VI are independent

symmetrical random variables with zero mean and vari-

ance determined from (38) and (51):

(c,’) = SO*AZ (d;’) = Do. Az

(c,) = o (d,) = O

(C,c,) = o (d,dj) = O, ‘i # J“. (52)

A particular example of interest is the case of white

Gaussian d(z) and c(z) with zero mean; then the Ci

and di of (52) are independent Gaussian random vari-

ables with zero mean. The statistics of the random ma-

trices %(z) and ~(z) [(43) and (47) ] are readily deter-

mined from (52); %’s (or ~ ‘s) corresponding to different

line sections (i #j) are statistically independent.

The assumed white spectra for c(z) and d(z) cor-

respond to a coupling and geometric imperfection with

infinite power. We show that the present analysis for

strictly white imperfections applies also to imperfec-

tions with low-pass spectra under suitable conditions.

Fig. 2 shows a typical low-pass spectrum for c(z),

with low-frequency asymptote SO and cutoff spatial fre-

quency p,. We need to divide the line into sections Az

short compared to the beat wavelength in order that the

discrete approximation of Section VI will be valid, but

VII I. EXPECTED RESPONSE

We first determine the expected values (10(z)) and

(lI(z) ) of signal- and spurious-mode (complex) transfer

functions of (1) with initial conditions of (2) for white

c(z) (50) and (51) with independent successive values.

Take the expected value of both sides of (41 ) [16], using

(42) and (43), and noting that %(z) is independent of

~ (z –Az) by the independence of the Ci,

(10(z)) = exp (– ll,Az)(cos c,)(10(z – Az)}

= [1 – I’oAz – ~(C,’) + ~ . . ](lO(Z – Az))

(~I(z)) = [1 – r~Az – ~(ciz) + . . . ](lI(z – Az)). (54)’

Using (52) and taking the limit as Az~O,

()(~o(z))’ = – rO + ~ (10(Z))

()@,(z)y =– r,+ ~ (1,(z)) (55)

the ‘ again denoting differentiation with respect to z.

Using the initial conditions (2) or (44) the solution of

(55) is

SO()(1.(2)) = exp (–roz) exp – ~ z (1,(2)) = o

()so
(Go(z)) = exp – ~ z (G,(z)) = O (56)

where we have used (3).

The expected complex signal and spurious ‘waves

have simple exponential behavior, the exponents being

the respective propagation constants in perfect line

[i.e., c(z) = O] plus .S0/2, So being the spectral density of

c(z).9 The larger the coupling, the sooner the expected

values decay to zero. The present initial conditions (zero

spurious-mode input) cause the expected spurious wave

to be identically zero for all z. The results of (56) are

SThe higher terms, indicated by . . ‘. , are of higher order in & for
white Gaussian c(z), and so disappear as Az-O. The same results
apply to Poisson c(z) only if the individual 6 functions that comprise
c(z) have areas small compared to (1); otherwise, minor modifications
must be made.

g This behavior differs from that for one-dimensional random
media, such as layered media or random TEM transmission lines, the
spurious mode being a reflected wav:, where the expected complex
waves vary precisely as do corresponding waves in perfect line [10].
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consistent with perturbation theory [5] for .SO,z<<l, but of R(u) of (61) by appending the subscript z. Then

are of course exact for all SOZ.

These expected values, while of interest, give only

limited information about the transmission statistics.

For example, it is reasonable to suppose that for large z

the spurious mode 11(z) has uniformly distributed phase.

This is consistent with zero expected value (56); how-

ever, the mean square value or average spurious-mode

power (111 12, will of course not be zero. We clearly re-

quire higher order statistics of 10 and lJ, These are

readily computed via Kronecker products” [16]. Exact

second-order transmission statistics are found in Sec-

tion IX.

IX. SECOND-ORDER TRANSFER-FUNCTION STATISTICS

We now seek the second-order statistics of the signal

transfer function, and choose for convenience to work

with the normalized Go rather than l.. Thus we seek

the covariance

l/0(0) = (GO(A,8 + T) Go*(Af?) ) (57)

for white c(z) with independent successive values. We

define the following auxiliary quantities that appear in

the analysis, although they are not of direct interest for

our present purposes:

from (46)

m(a) = -(6.(Z) x @*(z))

the symbol X indicating the Kronecker

The initial conditions of (49) become

[1
1

0
m(u) = o .

0

From (49)

& (z) x (Y*(Z)

= (%(z)f&(z – Az)) X (~*(Z)&*(Z –

(62)

product [16].

(63)

Az))

= (’i?).(z)X ‘?)*(z))(@.(z – Az) X @*(z -- Az)) (64)

where we use the fact that the Kronecker product of

(ordinary) matrix products equals the matrix product

of Kronecker products [16]. Taking expected values on

both sides of (64), noting that the first and second fac-

tors of the final expression in (64) are independent by

the independence of the c;, and using (62),

RU(CT) = (Go(AB + u) G,*(Ap)) $is(~) = (!&(z) x ~’(z) )?&Az(u) . (65)

= exp (Aaz) exp ( —jA~z) (GO(A,8 + O)GI* (Afl) ) (58) We write out the first factor from (47) as

(!lw) x 9“(4)

-[

(Cos’ c,) o 0 t exp [(2 A~+ju)Az] (sin2 CJ

o exp (Ar*Az) (COS2G) + exp [(Ar +ja) Az] (Sin2 ct) o
—

1 1(66)
o f exp (A I’*Az) (sin’ c,) exp [( AI’+jr)Az](cos2 c,) o

* (sinz c,) o 0 exp [(2 A~+jr)AZ] (COSZci)

R1o(rT) = (GI(AP + u) Go*(M))

= exp (ACXZ) exp (jA,8z) exp (jaz)

. (Gl(A/3 + a) Go*(A/3)) (59)

&(~) = (G1(AP + u) GI*(43)}

= exp (2 Aciz) exp (joz) (G1(Ap + U)G1* (A~) ), (60)

We regard Aa (6) and CO (14) as fixed parameters (Sec-

tion III). We define the column vector % as

rRo(.) 1

Rol(o)
‘ill(.) =

RIO(U) “

[1 Rl(a)

(61)

Define the column vector (Y., the matrix ~m, and C.

as given by (46), (47), and (14), respectively, with

AfldA~ +U throughout. ] 0 Indicate the z dependence

10 Note that C.= c if Ap and A~ +a have the same sign, c.= — C if

Af3 and A~ +U have the opposite sign.

where we have replaced Co by f C according to the pre-

vious footnote; the zero terms arise from the symmetry

of the c,. Using (52), we set

(COS2C,) =1–(C,2) +.. .= SO AZ+Z+. .

(sin’ c,) = (ci’) + . . . = SOAZ + . . . (67)’1

throughout (66), and take the limit of (65) as Az~O.

Equation (65) splits up into the following two uncoupled

pairs of equations, in which ‘ denotes differentiation

with respect to z; the initial conditions for each pair are

obtained from (63):

Ro’ = – SORO + SOR1

RI’ = t SORO + (2Aa + ju – SO)R1

Ro(a) \z_o = 1 Rl(rr) ],=0 = O. (68) “

11See footnote to (54).
12The upper (+) signs apply in the usual case where AISand@ -Ec

have the same sign (e.g., the two frequencies at which the covariance
is computed are both positive); the lower (—) signs apply when ~
and Ap +U have the opposite sign.
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RO1’ = (AI’* – SO)RO1 t .SORIO

1210’ = ~SORO1+ (AI’ +ja-SO)RIO

R,,(u) j,-, = O R,,(a) l.=, = O. (69)’2

Equation (69) hasthe trivial solution

RO1(cr) = O RIO(U) = O

for all z. Consequently, signal and spurious waves

remain uncorrelated because of our initial assumption

(2), used throughout, of unit-input signal and zero-input

spurious-wave amplitudes. Thus only (68) is pertinent

here. Equation (69) may become pertinent with dif-

ferent initial conditions in related problems where there

are inputs in both modes and where the desired response

is the sum of amplitudes of the two modes.

The solution to (68) yields exact expressions for 120(u)

(57), the covariance of the normalized signal transfer

function, and .&(a) (60), the covariance of the nor-

malized signal-spurious mode transfer function, for

white coupling (50) and (51):

[
R,(u) = exp [–SOZ(l – z)] cosh (.SozV’l + 22)

sinh (Soz~l + 22)
–z

<1 +22 1

—.
sinh (.SoZ/l + Z2)

R,(.) = + exp [–s,z(I – ~)] _
<1 + 2’

(70)”

where we have defined the new normalized quantity

~ for economy of notation. Perturbation results [5] are

obtained from these general (exact) relations by setting

Soz<<l and making suitable approximations.

Equation (70)—the main result of this paper—gives

the second-order statistics of the two-mode transmission

system of (1) for white coupling c(z) with independent

successive values, e.g., white Gaussian c(z). We discuss

below only a few representative results that can be ob-

tained from these relations; in particular, we restrict

our attention to the signal–signal transfer function 10

or GO, and so are interested only in &(u) for the re-

mainder of this paper.

lto(a) yields the signal (second-order) transmission

statistics in the frequent y (transfer-function) domain.

An equivalent description in the time domain is given

in Section X. A number of examples appear in Sec-

tion XI.

The case u = O yields the average powers in the two

modes, and so is of special interest. Denoting the powers

in the two modes by

we have, setticg u = O in (57) and (60) and using (3),

P. = exp (– 2aoz) ~RO(0) P, = exp (– 2aoz). RI(0) (72)

the arguments of the R’s representing a = O. Substitut-

ing into (68) with u = 0,18 we find

Po’ = – (2ao + SO)PO + SOPI

P1’ = SOPO – (2al + SJPI (73)

as previously obtained [11]. 14 Adding the two relations

of (73),

(Po + P,)’ = – 2aoPo – 2a,P,, (74)

A physical interpretation of (73) says that the power in

each mode decreases due to heat loss and conversion to

the other mode, and increases due to conversion from

the other mode. Equation (74) shows that each mode

contributes to the decrease in total power flowing along

the guide in proportion to its attenuation constant; this

result has previously been obtained directly from (1)

[5]. The solutions to (73) are readily obtained from (70)

with u = O or directly; they are consistent with results of

perturbation theory [5] for S.<<l, but are of course

exact for all S.2.

X. FREQUENCY- AND TIME-DOMAIN

RESPONSE STATISTICS

Consider a filter with transfer function S(~) and im-

pulse response g(t):

pm

9(0 = J S(f) exp (JWWj.
—.

(75)

We use script notation (g and S), as in Section V, to

indicate functions of actual (i. e., not normalized) time

and frequency. Assume that the system is real and

causal:

g(t) = g* (f) (76)

g(t) = o, t<o. (77)

Therefore,

w) = S“(–f) (78)

S(f) = J ‘g(O w (–jWOdL (79)
o

Define [compare (10) ]

w) = 1 – w) +Yuf) (80)

c?,and @ being real. From (78)

a(f) = q-f) @(j) = – @(–j). (81)

Let the symbol denote an average over fre-

quency. Thus the dc component of @, isF~~liJ__s(7,(f)df .
F+. 2F _F

(82)

13Note that the upper (+) signs always apply when a =0.
14Alternatively (73) maybe obtained directly from (41) by taking

the Kronecker product of this relation with its conjugate.
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define &i’” and @’cby
Itisconvenient todefine theac component of ~by

–@ and ((3) being given by (82) and (89).’5 Using (92),

c%(f) = 6 + a,.(f). (83)
(R(V) = (1 – 2(@) + (62)) + aac(~)

From the second relation of (81), (3@(m) = o

G=o. (84) &(t) = (1 – 2((2)+ (ii’))w) +

Since the dc component of @ is zero, distinctive notation Further, define

for its ac component is unnecessary. From (77) or (79)

we have the Hilbert transform relationships [12]
%(f) = – %(f) + @(j)

where C& is defined by (83). Then

@(f) = a,.(f)
a’”(v) = (~ac(f + v)$lc*(f) ). (95)

a,.(f) = – a(j). (85) (pa’(t) contains no ti functions; it is the Fourier transform

Cascade the above filter with impulse response g(t) of 618’(v) via (91), and is the spectral density of ~,o ( ~).

and transfer function ~ ( j), with an ideal bandpass filter From (85), 6’”( –t) [and @( –t) ] are causal, and the real

of width 2B centered around .fo; denote the overall im- and imaginary parts of the covariance 6iac(v) are Hilbert

pulse response and transfer function by A(t) and W(~): transforms [12 ]:

(P”(t). (93)

(94)

{

w, If-jol <~,
P’(t) = o, l>o (96)

w(f) =
o, l.f-fo\ >13, ~<-fo” (86)

Im ~“C(V) = – <e~a’(v)

Let z(t) denote the envelope [12 ] of the overall impulse
Re @“’(v) = ~’c(~). (97)

response r%(t): Finally, the second-order statistics of ~ac (c)r ~) and@

z(t) = I h(t) +ja(t) I (87)
are easily expressed in terms of @O and Pac. Define the

co- and cross variances of @a’ and @ as follows:

~(t) being the Hilbert transform of %(t). Then [12]
a%,(v) = (aac(f + v) C&(j))

2Bs {sfO+B–(f+lfl)/2?yt)=4
}

~(a + ~)~”(a)da (W(v) = (@(f+ v)@(f))–2BfO–~–(f–lfl)/2
6kw3(v) = (aae(f + v)@(j) )

. exp (j27rjt)dj_. (88)
Owl=.(v) = (@(f+ v) %(f)). (98)

we now assume that the transfer function S(f) k Th
e self- and cross-spectral densities are the Fourier

wide-sense stationary; i.e., its mean (s(f) ) is inde-
transforms of these four quantities given by (91) with

pendent of f, and its covariance (s( f +v)~*( f) ) depends

only on v and not on ~. The fact that (S(f)) is inde-
corresponding subscripts on @ and R. Then [12]

pendent off, together with (80) and (81), yields ‘ 6tu~,(v) = 6te(v) = ~ Re R“(v) (99)

(a(j)) = (d) @iaa,~(v) = – (%aac(v) = ~ Im (li’c(v) (loo)

(@(f)) = o (R&(t) = w(t) = * [Q’”(– t) + P’(t)] (101)

(s(f)) = 1 – (~). (89)
6%a@(f) = – (%x%.(t) = : [Q”’(– t) – &“’(t)]. (102)

We denote the covariance by

a(v) = (~(f + V)$j”(f)), a(v) = (R*(-v). (90)
The discussion of (89)–(102) characterizes the second-

order statistics of a wide-sense stationary transfer func-

Define tion in the frequency domain. We desire to (characterize

such a random filter in the time domain. ‘f?o do so we

@(t) = f “R(v) exp ( –j2mtv)dv, ~(t) = Q*(t). (91) cascade the random filter with the ideal bandpass filter

—m described just above (86). Equation (88) gives the en-

@(t) is the spectral density of the transfer function S(f);
velope of the overall impulse response. We take the ex-

it is real, but not symmetric. Assume that ~(t) contains
petted value of both sides of (88) and use (90),16 obtain-

no &function components except possibly at the origin
ing the average squared envelope of the impulse re-

t = O, i.e., ~ ti(t); consequently S(f) contains no periodic

components, but may contain a dc component. Then
IS Note that (&) i5 not in general equal to (~ )Z= @)2@ the

special case where these quantities are equal, @(~) and ~ Q) are

(R(co) = (R(-co) = (l~lz) deterministic quantities [see (112)-(1 15)].
“ $j’(.f) need now be only locally wid:-sense stationary over the

= ((1 – G)’)= 1 – 2(C2) + (ii’)
band 1~–j, I <B, rather than over the infinite frequency band as

(92) assumed in (90)
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sponse as

From (91) [17]

{ (si%’)’}”~’+“04)(z2(t))=8B 2B

again representing the convolution operator. From

(;3)

{ (’i%’)’}(z2(t)) =8B(l–2(@)+(~2)). 2B

‘8B{2B(si::;:’)’} * “’(-’)- ‘10’)

The first line of (105) represents the ideal response ob-

tained in the absence of statistical fluctuations in the

transfer function $j(j); the second line represents the

echoes due to transfer-function fluctuations. The quan-

tity in { ] in (105) has unit area; thus for large enough

B [i.e., half-bandwidth of the ideal bandpass filter cas-

caded with S(~) ] it resembles a unit impulse function.

We assume the following.

1) B is large compared to the correlation bandwidth

of $j(j); i.e., we examine a piece of ~(j) containing many

fluctuations. Then { } in the second line of (105) is

narrow compared to @’c( — t) and may be dropped.

2) { ] in the first line of (105) is narrow compared

to any pulse we wish to transmit over the channel in any

case where the first line is significant; consequently, we

replace it by a unit impulse.

Under these conditions, (105) becomes

Wt)) = 8B[(1 – 2(a)+ (G’)) c$(t)

= 8B6’(-t), B large.

For these limiting conditions &( –t)

normalized expected squared envelope

+ (P’’(-t)]

(106)

approximates the

of the impulse re -

sponse of the random transfer function $(j); we abbrevi-

ate the italic phrase by pulse response throughout the

remainder of this paper. Thus @(t) is the spectral density

of fj(j) (91) and P( — t) is the (normalized) pulse re-

sponse; @aC(— t) represents the average echo power pro-

duced by the transmission fluctuations.

The relations of this section (75)–(106) apply directly

to the solutions of the coupled line equations described

in Sections I–IX by the following substitutions:

(JZ

g-+g P+p t-+~ f+. : v+——
2T

S(f) -+ Go(M) @(f) -+ ~ (M) @(f)+ O(M)

a(v) + l?,(u). (107)

This is so because the solutions to (l), the coupled line

equations, with the initial conditions of (2), satisfy the

assumptions of this section.

1) The normalized impulse response for the signal

mode in the coupled line equations is real and causal in

general (15), (28).

2) The signal transfer function of the coupled line

equations for white coupling c(z) with independent suc-

cessive values is wide-sense stationary over the infinite

range – ~ <A~ < ~ [(56) and the first relation of (70)].

Thus .P(~), the spectral density of the normalized sig-

nal transfer function of the coupled line equations for

white coupling, is given by

sco

P(T) =
()

Ro(ff) exp (jTu2)d ~ (108)
—m

with RO(U) given by (70). P( —~) is the normalized pulse

response for the signal mode. Substituting (70) into

(108), calculations outlined in Appendix 111 yield

P(7) = exp (–~oz). 8(T) + Pa’(r)
———

1 d

l+T
SOZ. exp (–SOZ) exp (– 2A~zT) —

—.
pat(,) =

(
.I,(2SOZ<– T(l + T)), –l<, <0

(0, otherwise (109)

where 11 represents a modified Bessel function of first

order. The behavior of Ro(a) of (7o) and P(7) of (109)—

the two main results of this paper—is discussed for a

number of cases of interest in Section XI. 17

Consider again the dispersionless case discussed in

Sections III and V (30)-(33), and Appendix I (147)-

(149), in which AD is strictly proportional to j over the

infinite frequency range. The pulse Yesponse P( — t) in

the actual time domain is given in terms of (109) by

()Q(t)= + P + = exp (–SOz) #c$(t)+ W’(t)

()P’(t)= ;. P’” ;

where from (33)

(110)

(111)

is again the delay between signal and spurious modes

for a length z of transmission line. The pulse ~espome

G’( — t) (expected squared envelope of the impulse re-

sponse) and the impulse response g(t)(32) are both time

limited to the interval O~t< T.

XI. EXAMPLES

We finally illustrate the general behavior of the signal

mode transmission statistics of a two-mode transmission

system for white coupling with independent successive

values (e.g., white Gaussian coupling).

1?The Fourier transform of RI(u) of (70) is similarly obtained
from (162).
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The normalized transfer function GO(A(3) is wide-

sense stationary, since (GO(A/l)) (Eq. 56), and

Ro(u) = (Go(A13+a)Go*(A6)) (Eq. 70), are independent of

A(3. It is obvious that Go(A@) is not strictly stationary;

for example, GO( –A~) = Go*(A@) (Eq. 28), (G02(u/2) )

=Ro(cr) (Eq. 70).

Next, noting that RO( ~ ), the coefficient of the ~(~)

component of ~(~), gives the dc power of the transfer

function [(92), (93), and (107) ], we have from (70)

and (109)

RO(CO)= (/ Go(A~) l’) = ([1 –-]2)

= exp (—S.2) (112)

TABLE I

TRANSFER FUNCTION STATISTICS A~ 5; O

AC Power
AC Power DC Power

DC Power

Ro(o) – R,(m)
R,(o) – lib(m)

Ri)(w)
RO(CU)

SO=o o 1 0

(1 – exp (–SOz)’ ~ Sinh, &
Aa=(l exp ( —SOz)

2 2

AIX =-W o exp ( —SOz) o

So=m
exp (– I Aal z)

2
0 m

for all Aa~ O. From (56)

(Go(AB))2 = (1 – A (A@))’ = exp (–SOZ). (113)

Equation (113) is independent of AD; interchanging

( ) and ‘,

(Go(M)) = (Go(@)

(A(A@) = (A(Afl)). (114)

Since (112) and (113) are equal,

(A(M))2 = (A (43)2)
,.

(WB))2 = (G(AB)2). (115)

Therefore, A (A@) and G(AP) are deterministic; i.e., the

dc component of the transfer function is not a random

variable. This result is not true for all random media

problems.

Next, let us consider the ac power of the transfer

function, i.e., the mean square value of the ac fluctua-

tions about its dc component. The total power is

Ro(0) = ( / Go(M) l’). (116)

The dc power is given by ( 112). Recalling that [(80)–

(84), (94), and (107) ]

Go .C(A~) = Go(A@) – GO(A~) (117)

the ac power is

Ro(0) – Ro(~) = ( \ Go ,.(A8) /2). (118)

From (70) and (109),

RO(0) – RO(CO)= exp (–SOZ) exp (– I Aa [ z)

“( sinh (z~So2 + Aa2 )
cosh (z~So2 + ACY2)+ \ Aa I

V’SO’ + ACY2 )

— exp (—S02), Aa ~ O. (119)

The general behavior of (118), (119), and (112) is shown

by the limiting cases of Table I.

The first row of Table I, SO= O, states the obvious fact

that if there is no coupling, there are no transmission

fluctuations, and therefore the transmission is ideal.

The second row treats the lossless case Aa = O. As Soz

increases from O to m, the ac power increases from O to

~, and the dc power decreases exponentially from 1 to O.

For .SO.z>>l the transfer function fluctuaticms are much

greater than the average transfer function. Naively one

might think this implies poor transmission, but this is

not so. A rough idea of how this might come about can

be seen by considering random transfer functions of

the form

S(f) = exp (jO), +OuniformlydistributedfromO-+2~. (120)

Clearly, (S) = ~ = O, i.e., the average transfer function

is zero, while the transfer function fluctuation over the

ensemble of guides has unit power; nevertheless, such a

transfer function introduces no distortion, since the

transfer function for each guide is constant with fre-

quency. The discussion of Ro(T) and P(r) below demon-

strates the surprising fact that the transmission distor-

tion decreases as the coupling tloz increases for large

enough ~oz; the transmission distortion is c)f course zero

for Soz = O, and approaches zero as SoZ-+ cc.

The third row of Table I demonstrates that, for fixed

length z, making the spurious-mode heat loss IAal large

enough will smooth out the transmission fluctuations.

To illustrate, consider the case SOZ>>l, fen- which (by

the second line of Table I) the percentage transmission

fluctuations over the ensemble are large for Aa = O. From

(118), (119), and (112):

ac power Ro(o) – Ro(m)
—

dc power – -––-=e’p(%’&[)-lRO(W)

so )3
Aa ~ O, SOZ>>l,

1::/ ()—<< 1, .SOZ —— <<8. (121)
lAal,

Therefore, for the transfer function fluctuations to be

small compared to the average transfer function we

must have

I Aa I Soz
—->>y. ”

so
(122)
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The above discussion of this section has been con-

fined to transfer-function statistics at a single frequency

[R,(O) and RO( ~) ]. It is clear from the example of (120)

that this is not sufficient to characterize transmission

distortion. To do so we must study the functional de-

pendence of RO(C) and ~(r), (70) and (109), for all

values of their arguments, thus obtaining statistics of

the frequency variation of the transfer function and of

the impulse response.

We begin with the Iossless case Aa = O for simplicity.

Note from Section IV, 3) that the lossy case Aa <0 is a

straightforward extension. Then the following three

values of the transfer function covariance (70) are of

interest:

1 + exp (– 2S.2)
RO(0) =

2 1

RO(2S0) = exp (–S,Z) exp (+jSOz) ([1 – jsOz]) ~ Aa = O.

RO(m ) = exp (–SOZ) J (123)

We consider separately the perturbation case SOZ<<l

and the complementary case SOZ>>l, in which perturba-

tion theory is grossly violated.

For the perturbation case, (123) yields to second

order:

RO(0) = 1 – Soz + (s0%) 2
1

RO(2SO) = 1 – Soz + (SOZ)2 } SoZ<< 1, ACI = O.

&soz+@.!?RO(CO) = ,. (124)

It is obvious that no significant change in .RO(a) of (70)

occurs for u < 2S0. Rewriting (70) in a form appropriate

to the region of interest, u>>2S0, we have exactly

{ [ ( @(:Y)l
l?o(u) = exp (–S.2) exp ~ ~ z 1 –

Likewise, approximating the modified Bessel function 11

in (109) by half its argument yields for the (normalized)

pulse resPotzse18

P(–~) = exp (–S.2) .~(~) + P’C(–7),

P“”( – T) = exp (—S.2). (S.2)2(1 — T), O< T<l,

Soz <<1, Aa = O. (127)

Equations (126) and (127) are precise Fourier trans-

forms [via (108) ].

The above agrees with prior results of perturbation

theory. For example, from (1 13) we have exactly

(A) = 1 – exp (–S.2/2), Aa ~ O. (128)

In the perturbation case this becomes

(A) = y, Sl)z <<1, Aa~O (129)

which agrees with [5, eq. (300)] for Aa = O. From (101),

(107), and the second line of (127) with the factor

exp ( — SOZ) dropped,

Soz <<1, ACY = O (130)

gives the spectrum of the ac component of the loss A.

This agrees with [5, eq. (303)]. Equation (127) for

P“( –T) shows the average echo power is triangular. In

perturbation theory echoes arise from all pairs of mode

converters [the n = 1 term of (153)]. The triangular dis-

tribution arises (for ACY= O) because there are more pairs

close together (~MO) than far apart (TX 1) and none

separated by r ~ 1.

Next, consider long lines with large coupling Soz>>l,

where perturbation theory fails. We again initially re-

strict our attention to the Iossless case Aa = O. From

(123) :

RO(0) = ~

] RO(2SO) \

}

= SOZ. exp (–SOZ), SOZ >>1, Aa = O.

Ro( m ) = exp(–Soz) (131)

Here the significant range of u for l?o(u) is U<<2S0 in

contrast to the perturbation case above. The following

“Sin(:z+(+)l}‘“=0 ‘12’)
In the range of interest, approximating

yields

the radicals

(TZ 2
sin —

Ro(u)
(s02)2 2

[~1

= exp (–S.2) 1 + -— —
2

+j(soz)’ ~
Uz Uz

ZJ

“(1-%)1,
SOZ <<1, Aa = O. (126)

approximation to (70) is suitable in this range:

Ro(a) =
:exp(’;)exp(-~) ‘02>>1>

Aa = O. (132)

The corresponding @lse response may be obtained from

(109) by observing that for Soz>>l the asymptotic ap-

proximation ll(x)~exp (x)/~~ is appropriate except

near ~MO or ~~ — 1, and that P“C(~) is negligible except

near r- —~.

IS Recall @se response is the expected squared envelope of the
impulse response, as defined following (106).
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4/34-2soz(T-y)
From (132) the transfer-function covariance becomes

P(–T) =P’”(–,)=

1

()
lim 120(u) ~~exp j; ,

0<~<1, S,z>>l, Aa=O. (133)’9
Aa Z= O (139)

so+ .

Both the covariance RO(a) and P’C(~) are approximately

Gaussian for SOZ>>l; the approximations of (132) and

(133) are precise Fourier transforms [via (108) ].

Equation (133) represents a Gaussian pulse centered

on ~ =$, of width proportional to

d-2-
AT = SOZ>>l, ACY = O.

G’
(134)

For the dispersionless case, (110) and (111) give the

pulse response in the actual time domain, again Gaussian

centered on t= T/2, of width

( -2-
At=T Soz>> 1, Aa = O.

G’
(135)

T is again the delay between signal and spurious modes

for a length z of transmission line,

(136)

vo and VI being the (frequency-independent) mode

velocities [Appendix 1, 1) ]. These results apply to the

expected square envelope of the impulse response; the

impulse response itself and its envelope ~(t)are random

functions. From the Chebyshev inequality and (106),

the tails of the probability density for z(t) are bounded by

8B. (P(-t)
probability [z(t) ~ e] <

e’ “
(137)

Therefore, the (random) impulse response and its en-

velope z(t) are localized to the same time interval as the

pulse response @(– t), and consequently (135) gives a

good estimate for the duration of the impulse response.

Equation (135) gives the remarkable result that the

duration of the impulse response decreases as the cou-

pling increases (i.e. , as the spectral density So of the

coupling increases). In colloquial language, the worse

you make the transmission line (i.e., the larger its

random geometric imperfections), the better it works.

This behavior was first pointed out by Personick [19],

using a different model and analysis. We note from the

second row of Table I that the ac power of the transfer

function far exceeds the dc power in the present case

(S,z>>l, Aa = O). It is helpful to consider the limiting

case as So+ w and the pulse response becomes

Iim P(–7) -*13(, – *), Aa = O. (138)
se-l .

corresponding to sample functions

()Jim GO(AI?) + $ exp j ~ exp (j9), Aa = 0,

(exp (jO)) = O,

(K’) = 1. (140)

We might guess from the physics of the problem that 0

is uniformly distributed from 042~, although this does

not follow from this work. The real parameter K is a

random variable, proportional to the magnitude of the

transfer function GO or to the magnitude OF the impulse

response; since only its mean square value is known, this

work tells nothing about the transfer fun ction or im-

pulse-response magnitude fluctuations from guide to

guide. These limiting transfer functions have dc power

= O and ac power= 0.5 (averaged over the ensemble

of random guides), as in row two of Table I for So-+ m

or row four for Aa = O. Thus, in the Iossless case (Act= O)

for large coupling (SOZ>>l) the signal transfer func-

tion Go has approximately constant magnitude (which

varies from guide to guide) and linear phase, corre-

sponding to a narrow impulse response centered

around the average of the transit times for the two

modes. A physical explanation for this average delay

is that the pulse travels approximately equally in

both modes for large SOZ; the significant terms in the

time-domain description associated with (35) have

large n, corresponding to a large number c)f transitions

between modes.

We have seen that for Aa = O the average echo power

.P’c( –~) is approximately triangular in the perturbation

case (127), Soz<<l, and approximately Gaussian for

large coupling (133), Soz>>l. Fig. 3 shows the exact be-

havior of this function for a range of SOZ spanning these

limiting types of behavior, obtained from (109). Note

that SOZ does not become large enough in this figure for

the approximation of (133) to be well satisfied in every

respect; in particular, for Soz = 10 the peak of the Gaus-

sian-shaped curve is located at r =0.45 in Fig. 3, rather

than at ~ = 0.5 in (133); an improved Gaussian approxi-

mation, (143) below, gives excellent agreement with the

exact results even for S02 as small as 3.

Finally, we include the effect of differential loss

Aa <O. From (128) and (115) the average loss is inde-

pendent of Act. From (109) the general pulse response

(for some negative Aa) is given in terms of the Aa = O

pulse response by

~“”(—r) = exp (–2 \ Aa I ZT). [PW(-T)]A.=o,

A(x <0 (141)
M The &function component of P ( —r) [see (109)] vanishes be-

cause &z>>l. similar to (19). Consequently, -RO(a) of (70) and its real
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1.3 , 1
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T

Fig.3. Average echo power @z~lseres@onsewith delta- function corn-
ponentexp (–.Soz). J(r) omitted) with coupling as a parameter.

and imaginary parts for Aa<O are related to the cor-

responding quantities for Aa = O by expressions similar

to (20)–(22) by the substitutions

.4~– ReR0 (j~ImRO

Aa * 2Aa (142)20

As a single example, let us find the approximate pulse

response for long lines Soz>>l as a function of Aa.

Using the two-term asymptotic approximation II(x)

~(exp (z)/~27rx) (1 — [3/8x]) in (109), we take a three-

term Taylor expansion of In P( –T) about ~ = ~ [includ-

ing terms up to (r —~)z] to yield

P(–,) = P’”(–,) =
/~(l-&)exP(-,Aa,z)

1
(1+ lAalz)2 )

. exp

2S”Z – 1 +
[ &/(1-&)j

. exp

“[

T—

[
– 2s”2–1+

&/(l-&)l

1+ lAalz 2
o.5+—

3

/( )13
2.s’”2– 1 +— l–—

1

4S”Z 8S0s ]

Aa ~ O, So>>l, 0<, <1 (143)

zoThese substitutions apply also to other results of Section IV,
overlapping portions of Section X.

which may be further simplified to

P(–7-) = P“(-,) = ‘i~exp(–l Aalz)

[

(1+ IAalz)z
. exp

2S”Z – 1 1

[
– (2S”Z

(

1+1 Aalz2
. exp –1) ,– 0.5+

)12s,2– 1 ‘

ACZ < (), Silz >>1, 0<7<1 (144a)

for most purposes. For Aa = O this approximation is an

improvement over that of (133), which predicts the peak

of the pulse response occurs at r = 0.5. Equation (144a)

predicts the peak for Soz = 10 will occur at ~ = 0.45,

which is in close agreement with the exact result of Fig.

3. For Aa <0 the peak moves, toward r = O, maintaining

constant width. This approximation clearly fails when

the predicted peak occurs at r.= O; consequently, the

requirement

lAal<<l
(144b)

s“

must also be satisfied for the approximation of (144a)

[or (143) ] to hold. Within the range of (144b), the

magnitude of the peak decreases as ACY increases. Conse-

quently, within the region of (144b) increasing the

spurious mode loss I Aa I simply increases the overall

signal–signal loss, without otherwise altering the trans-

mission. This is physically reasonable, since for Aa = O

we have seen [following (140) ] that the pulse may be

regarded as equally divided between the two modes,

and so must also share their heat losses. For much larger

IAcxI , the ~ dependence of (109) is due almost entirely

to the exp ( — 2ACXZT) factor; we have

Pa’(–T) = (Soz)2 exp (–SOZ) exp [– (2 / Aa I z + 1)~],

]Aal>>l
— , ]Aajz>>l (145)

s“

for Soz large or small. The area of P“( –T) equals the ac

power of the transfer-function fluctuations; from (145)

J
.1 (Soz)’ exp (–S.2)

P“(-7’)dT =
]Aal

o 21 Aalz+l—’
TO— >>1,

I Acz] z>>l. (146)

When (146) is small compared to exp ( – SOZ), the area

of the &function component of (lo9), the ac power will

be small compared to the dc power, and consequently

the transfer-function fluctuations will smooth out; this

condition is identical to that previously given in (122)

in the region where both apply.

XII. DISCUSSION

The present methods permit exact treatment of

transmission statistics in either the time or frequency

domains for multimode media for white coupling with

independent successive values (e.g., white Gaussian
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coupling), and forward signal and spurious modes. The

signal distortion in long lines may thus be studied ex-

actly. Many of the assumptions of the present treat-

ment are easily removed at the cost of more complicated,

but straightforward, calculations. We can consider sys-

tems with more forward modes, outputs in several

modes, and we can compute higher order transmission

statistics by similar methods.

In contrast, other assumptions do not appear easily

removed. We cannot treat nonwhite coupling spectra

rigorously beyond guessing that low-pass spectra of Fig.

2 subject to the restriction of (53) will exhibit similar

behavior to that computed here for strictly white cou-

pling spectra. We cannot treat multimode systems with

backward waves, except in the special case of two modes

(one forward, one backward) [10], and then +dy by

compromising in calculating loss statistics (rather than

gain statistics, as in this work).

For large enough coupling .S’Oz, the transmission dis-

tortion will be small. Then for zero differential loss,

Aa =aO –al = O, the signal loss is $ exp ( –2C20Z). As the

differential loss I AaJ I increases, but remains small com-

pared to the coupling, IAal <<S0, the signal loss is

~ exp [–(a,+cw)z]=+ exp (–2a,z). exp (– IAalz).

Finally, for large differential loss compared to the cou-

‘1pling, , Aa >>.SO, the signal distortion decreases, and the

signal loss becomes exp ( – SOZ) for I Aa I /S.>> S02/2.

The result that transmission distortion approaches

zero as the coupling SOZ approaches infinity is due to

neglecting the frequency dependence of the coupling

coefficient (C. of (14) is assumed independent of the fre-

quency j of the signals on the transmission line). A

companion paper [20 ] extends the present work to

include the ~ dependence of C of (9); this extension is

important in practical cases such as waveguides or fibers

with white straightness deviation.

APPENDIX I

FREQUENCY DEPENDENCE OF A&—EXAMPLES

Assume for purposes of illustration that the signal

mode O has greater group velocity than the spurious

mode 1 (the opposite case is readily treated). Do, f?l,

and A@= j?o —f?l are odd functions of frequency f. We

consider two cases.

1) Dispersionless modes

27rf 27rf
~o=— p,= —.-.

ZJo VI
(147)

V. is both the group and phase velocity of the signal

mode, and V1 similarly for the spurious mode; both are

constant (strictly independent of frequency). Since the

sign al mode is assumed faster,

V(l > VI. (148)

We have

1

()
AD=– —–~ 2.-. (149)

VI Vo
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Afi is strictly linear with f and has opposite sign and

hence negative slope.

2) Waveguide-type modes: Throughout let the sub-

script x be O or 1, denoting signal or spurious mode,

respectively. For positive frequencies, f> O:

(150)

c
vgx = cdl – (f,:/f)z. (151)

‘“$’ = <1 – (f./f)’

jz are the cutoff frequencies, v@xthe phase velocities, and

v~z the group velocities for the two modes; c is the free-

space velocity. We have (for ~ > O):

()‘Afl=27r~-~ <O.
dj %o %1

(152)

Af?(~) again has negative slope [as in 1) above], but

AD> O [unlike 1)]. Over a sufficiently narrc)w band A@

varies approximate y Iinearl y with j (with negative

slope); the farther from cutoff, the wider the band over

which the linear approximation may be used.

APPENDIX II

DERIVATION OF GENERAL PROPERTIES OF SECTION IV

The general solution to (1)-(8) maybe written as [8]

Go(AI?) = 1 + ~
n,= ]

where

Ss

z xl

Gocw)(Ar) = dxl dx, .
0 0

(–l)”Go(.)(Ar) (153)

. C(XI)C(X2) . . . C(xzn)

.exp [AI’(xl-x2+x3-xl+ . . . —X2,,)] (154)

where we take the coupling c(x) as a fixeld arbitrary

function and the overall guide length z as a fixed parame-

ter. The terms of the series are bounded by [8]

[

LJo’ J
eA~g, Aa ~ O. (155)

(2n) !

Under suitable conditions the Go(n) are analytic func-

tions of AI’, the series for GO is uniformly convergent,

and hence GO is an analytic function of AI’ [property 1)].

This result is a special case of a general theorem [14].2’

Z1We are indebted to S. R. Neal for this reference.
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Setting definition (e.g., the left-hand side of (162) =0 for

lT\ >+).
S=~I—XZ+XS—X4+.. .—%.z% (156)

Taking [1/(2 .S.2)] d/dr of both sides of (162)

in (154), we may write this relation as

s

O’ ja sinh (SOZ<1 + 22’) .

GO(.) (As, A~) = ()(}.(s) exP(Aa$)exp(jA@s)d~ (157) -. 2S0 <l+ Z, ‘xp(~”’’z)d ~

variable by setting

s=z’r

where jn(s) is a (272 — 1)-fold integral of the product of
./

2n c’s, and therefore real. Normalizing the integration
– Aaz. exp (– 2Aazr)10(SOztil – 472)

T
2S.2. exp (– 2Aazt-) Il(soz@ – 472),

(158) – <1 – 47’

10 and 11 being zeroth- and first-order modified Bessel
Go(Aa’, A@) = 1 + Z ~ ~ ‘~.(Zr) exp (AazT) functions.

7?=1 o
Next, using (163),

.exp (jAPzr)d~. (159)

sm~sinh (SOz~l + 22)
Interchanging the order of ~ and ~, denoting ~~.l ~.(zr)

@ + 22 ()
exp (jruz)d ~

=~(zT), and comparing with (11) and (12), the normal- ‘m
2T

ized impulse response is
— ~ X eq. (162) + eq. (164)

{

[d(,) +zj(zr)] exp (AazT), 0~~~ 1 - ‘0
gA.(r) =

o, otherwise. (160) = ~ exp (Aaz) .6(7 + ~) — ~ exp (— Aaz) .6(T — ~)

This establishes properties 2)-5). — 2S.2. exp (– 2Aaz7) 7 11(s02/1 – 4,2),
Alternatively, Laplace-transform relationships [15 ] <l – 4,2

may be used to establish these results from (153) I r] ~;. (165)
and (154).

Further,

APPENDIX III

DERIVATION OF (lo9)
sinh (SOztil + 22)

;cosh (.!loz~l + 22) = $ Z —
dl + 22

. (166)

We outline the calculations necessary to obtain the

Fourier transform P(7) (108) of no(a) of (7o), which Therefore)

yields the normalized f%dse reslbonse P( – T) of the signal m

mode for the coupled line equations with white coupling. s ()cosh (SOZ{l + 22) exp (jnrz)d ~

Substituting in the result of [18 ] —m

1

j+: a+z
h

g + 272
==,– ~ X eq. (165). (167)

we obtain the result

s“ sinh (Soz~l + 22)

<1 + 22 ()
exp (j7az)d &z

—m

h-+ Aa+jSo ~~Aa—jSo (161)
Combining (165) and (167), the transform of the [ ]

factor of .Ro(u) of (70) is

S[co sinh (SOZV1 + 22)
cosh (SOz~l + 22) – 2 —

—m dl + 22 1

= SOZ. exp (– 2Aaz7)10(SOztil – 472), Irl <~ (162)

where, as in (70)
.

Aa + ju/2
~~

so
(163) =

and 10 represents a zeroth -order modified Bessel func-

tion. In (162) and in all subsequent relations of this

appendix, all functions are = O outside their range of

().exp ( jraz)d fl
27r

1+2T
– ~ x eq. (165)

exp (—AcM) .~(7 — ~)

1+2T
+ SOZ .exp (–2Aazr) 1,(s02<1 – 472),

VI – 4,2

\ ~ I ~ ~. (168)
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Finally, the transform of l?O(u) of (70) is

J
.

()RO(U) exp (j%uz)d fl
—m 27r

= exp(–.SOz) oexp (Aaz) X [eq. (168) with r-m+~] (169)

yielding (108) and (109).
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Optimum Coupling for Random Guides with

Frequency-Dependent Coupling

D. T. YOUNG, MEMBER, IEEE, AND HARRISON E. ROWE, I?ELLOW, IEEE

Afssfract-We obtain exactly the covariance of the signal-signal

and signal-spurious mode transfer functions of the coupled line equa-
tions with two forward-traveling modes, white random coupling with

statistically independent successive values (e.g., white Gaussian or
Poisson coupliig), and a coupling coefficient that varieb with the fre-
quency of the signals on the line. No perturbation or other approxi-
mations are made in this work. Time-domain statistics for the cor-
responding hpulse responses are obtained for moderate fractional
bandwidths.

These results are extensions of a similar treatment for frequency-

independent coupliig coefficients, given in a companion paper. If the
coupliig were independent of frequency, the signal dktortion would

ultimately decrease as the coupling increased, approaching zero as

the coupling approached infinity. The frequency dependence of the

coupling coefficient prevents the distortion from approaching zero;
the optimum coupling, which achieves minimum signal distortion,
is independent of guide length.
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Millimeter waveguides and optical fibers with random straight-

ness deviations have coupling coefficients inversely proportional to

the frequency. The above results yield the optimum random straight-
ness deviation for such a guide.

More forward modes can be treated in a straightforward way by
more complicated calculations.

1. INTRODUCTION

w

E STUDY exactly the coupled line equations for

signal and spurious modes (O and 1) traveling in

the forward direction [1]:

I,’(z) = – I’,I,(Z) + jc(z)I,(z)

subject to the initial conditions

10(0) = 1 11(0) = o (2)

with coupling coefficient c(z) proportional to a random


