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The Stepped Digital Elliptic Filter

JOHN DAVID RHODES, MEMBER, IEEE

Absfracf—llhe design and synthesis of various types of microwave

elliptic function filters has heen accomplished by a number of authors.

However, one problem in this field which remains is the realization of

compact narrow-band bandpass elliptic function filters. In this paper, a

procednre is presented which enables this class of filters to be constricted

in a compact digital form.

Since the physical realization is in the form of an n-wire line, one-

quarter of a wavelength Iong at the center frequency of the passband,

where the impedance levels are stepped along the center of the coupled

lines, the filter has been termed the stepped digital elliptic filter. The

absence of awkward interconnections irr the filter due to the stepped digital

structure inherently implies that reasonable insertion loss characteristics

may be achieved in the X-band region and above, and also simplifies the

mechanical construction.

It is shown that the resonant elements in the filter, due to the design

procedure adopted, are relatively insensitive to the absolute bandwidth of

the filter, and consequently fractional bandwidths of approximately 30

percent and below may be readily achieved while the normalized imped-

ance vahres of the elements in the network remain of the order of unity.

This latter result is similar to that obtainable from conventional inter-

digital filters but in the case of narrow bandwidths the stepped digital filter

is considerably smaller in physical size.

A systematic procedure is also formulated for the inclusion of the

parasitic lumped end effect capacitances into the overall design procedure

in order to maintain the eqokipple passband and stopband responses.

Experimental results are presented for a five-element, 11 percent band-
~dth filter and are shown to be in good agreement with theoretical pre-,

dictions.

INTRODUCTION

T

HE KNOWN theoretical advantages which arise

from designing a microwave filter to exhibit an elliptic

function response in preference to a Chebyshev re-

sponse have recently led to the publication of a number of

contributions on this topic. These papers have in common

the fact that the same electrical response is realized but they

vary according to the forms of physical networks chosen to

realize this elliptic response.

Saito [1] utilized the symmetrical nature of the odd-

ordered elliptic filter in his realization in the form of a cas-

cade of symmetrical two-wire coupled lines terminated in

either an open- or short-circuited stub. There exist theoret-

ical limitations upon the realizability of this structure, and

the second-order case has been discussed by Matsumoto [2].

A more severe limitation which arises is due to the inability

to synthesize physically realizable impedance values except

in the case of bandwidths of the order of an octave.

This problem of achieving physically realizable impedance

values has been common to most of the subsequent design

procedures. Schiffman and Young [3] have published design
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tables for bandstop elliptic function filters of degree 5 using

redundant unit elements. The synthesis technique used was

based upon the conventional partial pole extraction pro-

cedure, thus allowing the poles of attenuation to be realized

by simple and double shunt stubs. It was found that for

most bandwidths practical techniques for overcoming high-

impedance values had to be incorporated, but this approach

fails in the case of narrow bandwidths. Levy and Whiteley

[4], by using coupled-line structures, found that a systematic

procedure could be formulated for the introduction of

redundant unit elements into a distributed network based

upon the lumped prototype, while still preserving reasonable

element values. In the case of the narrow-band stopband fil-

ter, it was found that by initially resonating the low-pass

prototype before incorporating the unit elements, normal-

ized impedance values of the order of unity could be main-

tained. Successful narrow-band bandpass filters using this

technique were not reported, however.

The design procedures described in [3] and [4] rely upon

the tables published by Saai [5] for lumped low-pass proto-

type elliptic function filters, thus eliminating the task of con-

structing bounded real reflection coefficients from the pre-

scribed insertion loss function. However, it has been shown

by Horton and Wenzel [6] that the unit elements which are

necessary in these realization procedures may contribute to

the insertion loss characteristic, and therefore a superior

characteristic may be numerically computed thus making

Saal’s tables inapplicable in this optimum design case.

A compact realization of wide-band elliptic function fil-

ters has also been reported by Horton and Wenzel [6], [7],

This direct interdigital realization of the basic lumped form

of elliptic function filter has been termed the “digital elliptic

filter.” In this case no unit elements were incorporated into

the network resulting in a canonic realization. This particular

network possesses the fundamental advantage of direct con-

version of the tabulated element values of the low-pass pro-

totype into physical dimensions of the interdigital line. Un-

fortunately, this realization exhibits a number of disadvan-

tages, the two most important being that 1) it is impossible

to construct narrow-band filters and 2) difficulties are

encountered when the operating range is extended into

X-band and above, due to the awkward interconnection of

series stubs.

Hence, it may be stated that it is difficult, if not impos-

sible, to construct narrow-band bandpass elliptic function

filters using any of the realization techniques described. A

qualitative explanation may be developed, as follows, to

show why these procedures are inadequate when it is re-

quired to realize narrow-band elliptic function filters,

The resonant circuits which provide the poles of atten-

uation in the elliptic function filter possess elements which
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are proportional to the bandwidth scaling factor and others

which are inversely proportional. For small (or large) scal-

ing factors, one set of elements become physically unrealiz-

able if a direct digital elliptic realization is used. Similarly, in

Saito’s direct synthesis procedure, the parameters of the

adjacently extracted two-wire lines are approximately pro-

portional to and inversely proportional to the scaling factor,

respectively. In the cases where redundant unit elements are

introduced into the networks, the situation tends to deteri-

orate since the impedances of the unit elements are invariant

to the bandwidth scaling factor, unless of course, the resonat-

ing technique of Levy and Whiteley [4] is applied in the

bandstop case. However, with their technique for realizing

resonant sections in cascade with a unit element, a successful

solution to the narrow-band bandpass case does not neces-

sarily follow. Similarly, other forms of resonant section

realizations proposed by Levy [8] are inherently broad-

band.

The basic problem to be solved follows directly from this

qualitative reasoning. A realization must be sought whereby

the resonant sections which provide the poles of attenuation

must be relatively insensitive to the bandwidth scaling fac-

tor. Such a realization is presented in this paper.

THEORETICAL DESIGN PROCEDURE

One of the two basic forms of the odd-order low-pass

prototype elliptic function filter is shown in Fig. 1, and it is

this cascade of pi sections which is to be realized by the

stepped digital elliptic filter. Initially, we shall consider the

realization of a typical section with shunt capacitances C,–1

and C,+l and with a transmission zero at Q,= l/<L7C%

The normal procedure for the conversion into a micro-

A A

Fig. 1. The odd-order low-pass prototype elliptic function filters.

Fig, 2. A typical resonated pi section.

In this case the band-center frequency is normalized

to u = ir/4 and the band-edge frequencies a = w and

u= (7r/2)— UC(W< r/4), This procedure has, of course, theo-

retically doubled the degree of the network but it will be

shown that by using the proposed stepped digital realization

the number of nonredundant coupled lines necessary to

realize any given elliptic filter is equal to the degree of the

low-pass prototype. Throughout this paper the degree of the

network is assumed to be the degree of the resulting reflec-

tion coefficient.

Applying this resonating technique to the basic section

under consideration, we generate the section shown in Fig.

2 where the pertinent element values are the following:

wave bandpass filter is to apply the high-pass transforma- Cl.l = aC,__l, Cl+l = aC,+l
tion

tan u.
1

L;. I = —
1

(1)
L:+l = —

(J— (7?!-1 ‘ c;.+ I
tan w

where the normalized band-center frequency is at u= 7r/2

and the band-edge frequencies are situated at w = W. and
u = T —w, in the fundamental period. However, this trans-

formation implies that the impedance values of three of the

elements are inversely proportional to tan u. and one propor-

tional to tan u,. For narrow bandwidths tan w>>l; this

results in at least one extreme impedance value even if the

entire impedance level of the network is adjusted by means of

transformer action at the input and output ports, as in case

of conventional interdigital networks [9], [10].

The solution to this problem is to apply the conventional

bandpass transformation

(2)

where

tan 2UC
a=

2“
(3)

C.+ = + = aC.(1 + X..z)
,

C,- = +- = aC,(l + A,+’)
T+

where

(4)

(5)

For a narrow-band filter we have a >>1, and for most prac-

tical filter specifications this implies that a >>!2, for all r. It

follows immediately from (5) that X,+ and ),,- are of the
order of unity, and hence, from (4), the admittance leds of

all of the elements in the network are approximately directly

proportional to the bandwidth scaling factor a. It is appar-

ent therefore, that if the coupling into the network can be

made through transformer action, then the resonant sec-

tions will become relatively invariant to bandwidth scaling.
Before considering the method for achieving this transformer
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action, the coupled-line realization of the basic network will The interconnection of the basic sections must now be

be discussed. accomplished.

From Fig. 2, the obvious direct realization of the reso- It may readily be shown [9], [10] that if any pair of con-

nated section is in the form of a pair of 3-wire line inter- dictors in a uniform n-wire line are at the same potential at

digital networks connected in parallel. One network pos- both ends, then at any intermediate point they are at the

sesses lines which are short circuited to ground at one end, same potential and may consequently be replaced by a single

whereas the other is terminated in open circuits. The phys- line. For the overall filter, the interconnection of consecu-

ical configuration is depicted in Fig. 3 where the nodes r— 1, tive sections requires that the node at the junction of the

r, r+ 1 refer to the corresponding nodes in Fig. 2. The char- outer pair of lines of one section be at the same potential as

acteristic admittance matrices of networks 1 and 2 may there- the node at the junction of the corresponding pair of lines of

fore be identified as follows. the adjacent section. Since the opposite ends of the lines in

Vetwork 1

(r – 1) (r) (r+ 1)

r

a[(7r_1 + C,(l + X,+z)] —acr(l + X,+2) o

1

—4(1 + xr+~) aC, [2 + X,+2 + X,–2] —ac,(l + X,–2)

o —aC,(l + X,–2) a[C,+l + C,(I + L2)] 1 (6)

Network 2

(r – 1) (r) (r+ 1)

[

a[C,–1 + C,(I + L-2)] —aC,(l + A,–z) o

—aC,(l + A,_2) aC,(2 + X,+z + ~,_2) –ac,(l + X,+2) 1 (7)

o –aC,(l + A,+2) a[C,+l + CT(I + h+2)]

The characteristic admittance of line r to ground may be

made finite by scaling the admittance level of the center rows

and columns in the above matrices by a factor greater than

unity, as in the case of conventional interdigital networks

[9], [10], [11]. This operation does not alter the external

performance of the section between nodes r– 1 and r+ 1 if

the same scaling factor is used on both networks. One addi-

tional condition which is necessary for physical realization

other than the normal hyperdominancy condition, is that the

distance between adjacent lines of one network must ap-

proximately equal the distance between corresponding lines

on the other network, in order to obtain simple physical

interconnections.

From the matrices (6) and (7) it may be seen that the

admittance to ground of lines r on both networks 1 and 2

will be the same after the necessary admittance scaling.
Furthermore, since the sum of the coupling element values

between lines r– 1 and r, r and r+ 1 are the same for both

networks, the distance between lines r— 1 and r+ 1 must

inherently be approximately equal. In addition, since A,+

and L are of the order of unity, the physical separation in a

transverse direction of lines r on both networks must neces-

sarily be small. These points will be discussed further after

the construction of the entire network has been achieved.

We have now shown how each of the basic resonated sec-

tions in the bandpass microwave elliptic function filter may

be constructed utilizing a pair of 3-wire interdigital lines.

network 1 are short circuited to ground, and therefore at the

same zero potential, the appropriate pair of lines from adja-

cent sections in network 1 may be condensed into a single

line [10].

Since the opposite ends of the lines in network 2 are open

circuited, and therefore not necessarily at the same poten-

tial, this simple principle may not be applied directly. How-

ever, it may be shown that a sufficient condition for the con-

densation of open-circuited lines connected together at one

end is that neither line couples directly nor indirectly to any

other line which is not also open circuited. This property is

of fundamental importance when consideration is given to

the method of transformer coupling into the network at the

input and output ports.

As an example of the line condensation procedure for a

two-section (fifth-degree) filter the overall network reduces
to a pair of five-wire lines as shown in Fig. 4. The characteris-

tic admittance matrices of these two lines are

— ~— =

NETWORK I

m

,-, r+,

NETWORK 2

Fig. 3. The coupled-line realization of the basic resonated seetion.
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Network 1

[

a[Cl + CZ(l + ~j+z)] –aC2.(1 + kZ+2) o

—aCz(l + kz+z) rzc2(2 + X2+2 + X2-2) –aC2(l + ~2_2)

o —UC2(1 + x2_7 a[C3 + C2(1 + b-z) + C4(1 + ~4+2)1

o 0 -–aC4(l + X4+2)

o 0 0

Network 2

[

a[C1 + C2(1 + X2–2)] —aC2(l + X2–2) o

—aCz(l + k.2) aCj(2 + XZ+2+ X2–Z) —aCj(l + kj+z)

1

0 —UC2(1 + A2+9 a[c3 + C’2(1 + A2+2) + C,(l + LZ)]

o 0 –aCA(l + Xi-z)

o 0 0

0

0

–aCJ(l + A4+9

aC4(Z + X4+2 + A4_2)

-aCA(l + X4–2)

o

0

—aCi(l + X4–2)

aCA(2 + A4+2+ A4–2)

–aC4(l + A4+2)

o 1

0 I
o

1
(8)

—aC4(l + k4_2)

a[cs + C4(1 + X4-2)]

o

0

0 1(9)

–ac4(l + A4+9

a[C6 + C4(1 + A4+~)]

For an elliptic function filter of degree n in the low-pass ventional interdigital form as shown in Fig. 5 for the case of

prototype version, the complete network degenerates into a a fifth-degree network. The number of lines in network 1 has

pair of uniform digital n-wire lines which are one eighth of a now been increased ton+ 2 and its resulting augmented char-

wavelength long at the band-center frequency. Due to the acteristic admittance matrix becomes

r 1 –1 o . . .

I
–1 1 + a[Cl + C2(1 + A2+2)] –aC2(l + A2+2) . . -

10 – aC2(l + X2+2)

.

aC2(l + X2+2 + X2_2) . . .
(lo)

shunt connection of this pair of digital networks, the com-

plete network may be viewed as consisting of a single stepped

digital line which is one quarter of a wavelength long at the

band-center frequency. However, it must be remembered

that the input and output terminals are situated at the cen-

ters of the first and last lines. The direct connection of these

points to the external ports would yield a filter with the

required electrical response, but the internal elements would

be of low impedance. As mentioned previously, to overcome

this problem coupling from the ports to the centers of these

lines must be made using transformer action.

To accomplish this, unit elements are introduced into the

network, one at each end, of unity characteristic impedance,

and one eighth of a wavelength long at the band-center fre-

quency. These unit elements may then be realized in the con-

Fig. 4. Degenerate realization of a two-section filter.

while the characteristic admittance matrix of network 2

remains unchanged. A dual coupling system might appear

to be the coupling into the open-circuited ends of the input

and output lines through open-circuited coupled lines. This

procedure, however, is incorrect since it changes the proper-

ties of the complete network due to the implied sufficiency

condition for the line condensation of open-circuited lines.

The justification for using the former method of coupling

follows from the condition for line condensation of short-

circuited lines [10].

The only factor which now remains to be considered is that

of the admittance scaling of the entire digital line. Initially,

every line in the stepped digital filter, exce,pt the lines on

which the input and output ports are situated, may be scaled

by the factor l/ti~. The characteristic admittance matrices

Fig. 5. Realization of fifth-order filter with
transformer coupling elements.
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of networks 1 and 2 then become

[

1
1 —= o

da

1
—= : + c, + C,(I + b+’) –C2(1 + AZ+’)

da a

o – C%(1 + x,+’) c2@ + A,+’ + X,_’) – C,(I + A,_’)
(11)

10 0 –C,(1 + A,-’) c, + C,(l + A,-’) + C,(1 + A4+2)

for network 1, and

[

c, + C,(l + X,_’) – C,(I + k’)

–C,(l + X,_’) C2(2 + A,+’ + A,_’)

1?
– C,(1 + A,+’)

—

o

– C,(l + k’+’)

c? + C,(1 + h,+’) + C,(1 + A4-2) (12)

for network 2.

It follows immediately that all of the lines forming the

resonant circuits are relatively insensitive to the bandwidth

scaling factor since the only variation is with respect to

My which, for narrow bandwidths, are all of the order of

unity. Thus, the only significant change in the network due

to a variation in bandwidth is in the values of the coupling

elements at the input and output lines.

Admittance scaling may now be applied to the even-num-

bered lines in order to produce finite values of capacitance

to ground, and to the odd-numbered lines to produce addi-

tional flexibility in the physical realization. In conventional

interdigital filters, the scaling factors are normally chosen

such that the capacitances to ground of all of the lines, ex-

cept possibly the input and output lines, are equal. Phys-

ically, this results in bars of approximately the same width

when a rectangular bar configuration is used [12]. In the
present case, however, additional points must be considered.

As mentioned previously in the case of a single section, it

is necessary for the complementary lines in networks 1 and

2 to be separated by approximately the same physical dis-

tance. This constraint has been shown to be inherently

satisfied due to the resonated realization, and the scaling

factors should therefore be chosen such that there is a mini-
mum amount of variation in the ground and coupling ca-

pacitances throughout both networks 1 and 2. To illustrate

the general procedure of admittance scaling, an example of a

five-element stepped digital elliptic filter is presented.

NUMERICAL EXAMPLE

The element values for the fifth degree low-pass prototype

filter to be considered may be found in [5, p. 82). The filter

with a stopband attenuation greater than 60.1 dB and a
passband VSWR less than 1.22 has been chosen with an

1l-percent bandwidth. The element values of this low-pass

prototype are

Cl = 0.9265 C, = 0.05866 c, = 1.666

C, = 0.1607 Cs = 0.8363

with

Q2 = 3.6119 and fld = 2.3038.

If the center of the passband is normalized to a frequency

T/4 =0.7854 radians, then the band-edge frequency w. will

be 0.7422 for an 1l-percent bandwidth filter. From (3) we

therefore have

11.54
a= — = 5.77

2

Utilizing (5) we then have

A,+ = 1.361

k’– = 0.735

X4+ = 1.219

A,_ = 0.820

These values may now be used to determine the characteristic
admittance matrices (9) and (1 O) for networks 2 and 1,

respectively. Due to the number of algebraic operations

necessary to derive these matrices, the entire procedure was

programmed on a digital computer. After these matrices had

been obtained, it was then necessary to apply admittance

scaling to obtain a realizable network.
Initially, lines 1 and 5 on both networks were scaled by

the factor l/Vti. The remaining lines were scaled such that

the corresponding main diagonal entries in the capacitance

matrix representing network 1 were respectively equal to, and
a factor 1.2 greater than, the main diagonal value of line 1 up

to the center line from the input, and line 5 up to and includ-

ing the center line from the output. This simple procedure
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appears to result in or near optimum relationship between The dimensions of the bars in network 1 maybe calculated

the coupling and ground capacitances of both networks 1 from the capacitance matrix (13). However, before the di-

and 2. mensions of the bars in network 2 can be obtained, due

After scaling the entire matrices by the factor 7.534 in account must be taken of the parasitic lumped end effect

order to convert to capacitance values in a 50-ohm system, capacitances.

the resulting capacitance matrices for the particular numer- The following approximate compensation procedure may

ical example under consideration were the following. be adopted which neglects the interbar fringing capacitances.

Network I

[

(o) (1) (2) (3) (4) (5) (6)

7.534 –3.136 o 0 0 0 0

–3.136 9.546 –3.062
1

0 0 0 ‘1
o

0

0

1 0

0

Network 2

–3.062 11.456 –1.395 o 0 0

0 –1.395 11.558 –3.848 o 0

0 0 –3.848 11.558 –3.068 o

0 0 0 –3.068 9.631 –3.136

o 0 0 0 –3.136 7.534 1

(1) (2) (3) (4) (5)

7.661 –1.653 o 0 0

–1.653 11.456 –2.583 o 0

0 –2.583 11.269 –2.588 o

0 0 –2.588 11.558 –4.561

o 0

Using a rectangular bar configuration, Getsinger’s graphs

[12] may be used to calculate the physical dimensions of the

filter. Using a bar thickness to ground plate spacing of 0.6,

which appears to be an ideal value for all realizable band-

widths, a typical filter of the form of the sketch shown in

Fig. 6 may be obtained. In this sketch, it may be noted that

the capacitance to ground of the first and last lines in net-

work 2 are partially given by the capacitance to the grounded

end walls. The introduction of these grounded walls enable

the transformer elements to be readily introduced into the

overall physical configuration.

Fig. 6. Sketch of physical conilgoration of the designed filter.

L--- c—l ~L~

Fig. 7. Compensation for end effect capacitances in network 2.

0 –4.561 9.312

(13)

(14)

If 1is the length corresponding to an eighth-wavelength at

center frequency, then the required lengh 1’ of’ network 2 will

be given by

1’ = 1 – 2c,b (15)

where COand b are defined in Fig. 7.

This equation has been obtained from the assumption that

the distribution of lumped capacitance along the end of any

bar in network 2 is proportional to the distribution of

capacitance to the ground plates across the width of the cor-

responding bar, and that the distance l–l’ is considerably

shorter than a quarter wavelength.

In order to maintain the correct location of the poles of

infinite attenuation, due to the reduction in length of net-

work 2, the coupling admittances in network 2 must be aug-

mented according to the equation

Y,*X,*~~,+~. — ——.

- ‘an(%-’”)
(16)

where Y,f is the theoretically derived coupling admittance

forming part of the resonant circuit which produces the pole

of infinite attenuation at the normalized frequency tan-l 1,~.

This correction must also be applied at the center frequency

to the admittances between the end lines and the grounded

end walls.
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Fig. 8. Insertion loss and VSWR characteristics of experimental filter.

An experimental filter has been constructed using the

values obtained from the numerical example with the above

compensation for the end effect capacitances. The center fre-

quency was 2150 MHz, from which we obtain 1=0.686

inches. A ground plate spacing of 0.625 was chosen with a

bar thickness to ground plate spacing of 0.6.

From (15) if COis assumed to be the fringing capacitance

for an isolated bar [12], we have

1’ = 0.686 – 2 x 1.2 x 0.625 = 0.536.

Applying (16) to the coupling admittance given in the

matrix (14) results in

O* 2.400 3.41
2+ 1.653 2.50
2– 2.583 3.51
4+ 2.588 3.81
4– 4.561 6.27

where YO* is assumed to be the isolated bar fringing capaci-

tance of the end lines and is used in the calculation of the

width of these lines.

The measured values of this experimental filter are shown

in Fig. 8. Apart from a slight shift in the center frequency

and poles of infinite attenuation, this response is in good

agreement with the theoretical response.

CONCLUSIONS

In this paper a method has been presented whereby com-

pact narrow-band bandpass elliptic function filters may be

constructed. The realization is in the form of a pair of digital

lines and has been called the stepped digital elliptic filter due

to its basic physical configuration. Fractional bandwidths of

approximateIy 30 percent and below may readily be ob-

tained, but in the case of very narrow bandwidths (2 percent

and below); difficulties are encountered due to the sensi-

tivity of the response with respect to fractional percentage

changes in the locations of the poles of infinite attenuation.

However, due to the unique independent realization of

these poles above and below the passband by the interbar

coupling regions, every pole location may be individually

tuned.

The main practical advantage of this filter in comparison

to a conventional interdigital filter which exhibts a similar

electrical response is the significant reduction in physical

size. This comparison is based upon the realization of the

same stopband attenuation level, the same passband VSWR

and similar passband dissipation loss. The main reason for

the similar dissipation loss in this reduced size filter may be

attributed to the low midband group delay which in the ex-

perimental filter was less than 4 ns, resulting in a loss of

0.3 dB in the unplated brass structure.
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