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Swnmary—Direct-coupled resonator filters in transmission line

are dkcussed. The resonators consist of sections of transmission line

coupled either by series capacitances or shunt inductances. Over
narrow frequency bands, such filters show characteristics similar to

those of lumped-constant filters and their design is straightforward.
The design of direct-coupled resonator filters over wide (as well as

narrow) frequency bands is presented here using the quarter-wave

transformer as a prototype circuit. Several numerical examples (with

fractional bandwidths between 10 per cent and 85 per cent) are

worked out to illustrate the method. It is shown that the response can

be improved by optimizing the line impedances.

I. INTRODUCTION

T

HE BAND-PASS FILTER design techniques

discussed in this paper are based on the quarter-

wave transformer prototype circuit [1], [2].

They apply to band-pass filters with transmission-line

resonators alternating between coupling elements

which are series capacitances or shunt inductances.

The design bandwidths may range from narrow-band

on up to such wide bandwidths that the filters can be

used for microwave high-pass applications. The two

types of filter considered here are shown schematically

in Figs. 1 and 2. The design of other types of band-pass

filters over wide bandwidths has been treated by Mat-

thaei [3]. The design of direct-coupled resonator filters,

as shown in Figs. 1 and 2, but with only narrow or

moderate bandwidths, has been treated by Cohn [4],

Riblet [5] and others. The design viewpoint of this

paper was developed to obtain a design method which

would hold for wider bandwidths and for smaller pass-

band Chebyshev ripples as well.

Section II introduces the quarter-wave transformer

prototype circuit, and Section III gives basic design

formulas for synchronously tuned filters.

Section IV treats narrow-band filters from the pres-

ent viewpoint, showing the connection with the lumped-

consatnt low-pass prototype [4]. It has been found

that the design technique of Section IV for narrow-

band filters generally works well up to fractional band-

widths of about 20 per cent or more, provided that the

pass-band ripple is not too small; the rippIe VSWR

should exceed about 1 + (2w)~, where w is the fractional

bandwidth of the narrow-band filter, if it is to be de-

rivable from a lumped-constant low-pass prototype.

The remainder of this paper, from Section V on, is
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concerned mainly with the design of wide-band and

pseudo-high-pass filters, for which the method of the

quarter-wave transformer prototype is principally in-

tended. The basic theory, design data, and examples

will be found in Sections V through VIII.

In this paper the frequency will be introduced every-

where as the normalized frequency, usually denoted by

~/~0, the ratio of the frequency to the synchronous fre-

quency ~0. For waveguide filters the “normalized fre-

quency” is to be understood to refer to the quantity

&O/Au, the ratio of the guide wavelength h,o at the fre-

quency of synchronous tuning, to the guide wave-

length ho.

11. FILTERS WITH IMPEDANCE STEPS

.LY-D IJIPED.LY-CE INVERTERS

Stepped-impedance filters (quarter-wave trans-

formers and half-wave fiIters) have been treated by

Young [1]. This section points out their equivalence to

filters with impedance inverters, and serves as an in-

troduction to the design of wide-band reactance-

coupled half-wave filters.

An impedance (or admittance) step [Fig. 3(a)] can

always be replaced b}- an impedance (or admittance)

inverter [Fig. 3(b) and (c) ] without affecting the filter

response curve, provided that the input and output

ports are properly terminated. Thus the two types of

circuit in Fig. 3 are entirely equivalent as a starting

point for the design of filters. The impedance-inverter

(or admittance-inverter) point of view [Fig. 3(b) and

(c) ] is the more natural one to adopt to convert the

lumped-constant low-pass prototype into a transmis-
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Fig. 3-A stepped-impedance half-wave filter and equivalent filters
nsmg impedance or admittance invert ers. (a) Half-wave filter
with stepped impedances. (b) Half-wave filter with ideal imped-
ance inverters. (c) Half-wave filter with ideal admi ttance inverters.

sion-line filter [4]; whereas a stepped-impedance-filter

point of view is more convenient to utilize directly the

design data of Young [1].

The stepped-impedance filter is turned into a reac-

tance-coupled filter by repIacing each impedance step

with a reactance having the same discontinuity VSWR

[1] and spacing the reactance to obtain synchronous

tuning (Section III).

One important difference in approach between this

paper and earlier work [4] is that in this paper the

starting point or prototype circuit is one of the circuits

in Fig. 3 (the synthesis of which is precisely controlled),

whereas for narrow-band filters the exact synthesis may

be pushed back one stage to the lumped-constant pro-

totype circuit of Cohn [4]. For example, the perform-

ance of the circuits shown in Fig. 3(b) and (c), having

ideal inverters, would not give exactly the prescribed

response if designed by the methods of Cohn [4] (al-

though the approximation would be very close for

narrow or moderate bandwidths). [However, the circuits

in Fig. 3(b) and (c) have transmission characteristics

identical to those of the half-wave filter in Fig. 3(a).

The frequency behavior of the reactive discontinuities

(shunt-inductances or series-capacitances) is examined

in detail. The behavior of the discontinuities leads to

increasing distortion of the filter response (e. g., pass-

band bandwidth and stop-band attenuation), as the

frequency spread is increased. This type of considera-

tion can be left out in the design of narrow-band filters,

thereby simplifying the design process considerably.

However, it is important to predict the distortion for

filters having large bandwidths.

A quarter-wave transformer and the notation asso-

ciated with it is shown in Fig. 4. The characteristics of

maximally flat and Chebyshev quarter-wave trans-

formers are sketched in Fig. 5. Closely related to the

quarter-wave transformer is the stepped-impedance

half-wave filter [1 ] sketched in Fig. 6. Its characteris-

tics, shown in Fig. 7, are similar to those of the quarter-

wave transformer shown in Fig. 5. If the impedance

steps or junction VSWR’S V; (i== 1, 2, . L . , n+ ’1) of a

quarter-wave transformer and a stepped-impedance

half-wave filter are the same, then the characteristics

of the latter can be obtained from those of the former

by a linear change of scale on the frequency axis; the

stepped-impedance half-wave filter bandwidth be-

comes one half the quarter-wave transformer bancl-

width.

The parameter R is again defined [1] as the product

of the discontinuity VSWR’S.

R = V1V2 c ~ . V.+I. (1)

If the fractional bandwidth w is less than about 2(1 per

cent, and if [1]

R>> ~ “,
() w

(2)

then the filter may be considered narrow-band; this

case will be treated in Section IV.

The quarter-wave transformer prototype circuit is

suitable for designing reactance-coupled filters up to

very large bandwidths. As a result it is subject to cer-

tain limitations that do not complicate narrow-band de-

sign procedures. It is well to understand these differ-

ences at the outset. Basically they arise from the fact

that it is not possible to convert the specified perform-

ance of the filter into the performance of the appro-

priate prototype transformer over large frequency

bands by means of simple equations or tabulated func-

tions. Instead, the frequency variations of the reactive

couplings have been used to modify the known re-

sponse functions of quarter-wave transformers to pre-

dict the performance of the derived filters (Figs. 1 and

2) over large frequency ranges. Thus it is possible from

the graphs to quickly calculate the principal filter

characteristics from the transformer characteristics,

but not the other way round, as would be more desir-

able. In the case of wide-band designs where the varia-

tion of reactive coupling across the pass band is ap-

preciable, it is necessary first to guess what prototype

should be used, and then to match the predicted filter

performance against the specified filter performance; if

they are not close enough, the process must be repeated

with another prototype. What makes this method

feasible and practical is the speed with which, by means

of the design graphs, this prediction can be made. Most

of these design graphs will be presented in Secti~n V.
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Fig. 5—Quarter-wave transformer characteristics.
(a) Maximally flat. (b) Chebyshev.

ELECTRICAL

LENGTHS ~t?~dfi

llJ+_
___~

JUNCTION

VSWR’S VI k V3... % %+1

PRODUCT VI V2’ “fo+I = R DETERMINES PEAK ATTENUATION.

ALL ELECTRICAL LENGTHS 8 ARE 180 OEGREES AT THE

SYNCHRONOUS FREQUENCY, WHICH IS ALSO THE CENTER FREQUENCY.

Fig. 6—Stepped half-wave filter used as prototype circuit.
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Fig. 7—Stepped half-wave filter characteristics.
(a) Maximally flat. (b) Chebyshev.

III. SYNCHRONOCTSLY TCTNED REACTANCE-COUPLED

HALF-WAVE FILTERS

Band-pass filters of the two configurations shown in

Figs. 1 and 2 are of considerable practical importance

since they are easily realized in practice. These two

circuits are duals of each other. The first, shown in

Fig. 1, consists of a number of series capacitances al-

ternating with a number of transmission-line sections;

the second, shown in Fig. 2, consists of a number of

shunt inductances alternating with a number of trans-

mission-line sections. Both filters will be called re-

actance-coupled half-wave filters, in the sense that all

line lengths between reactance approach one-half wave-

length (or a multiple thereof) as the couplings become

weak. Each line length between discontinuities con-

stitutes a resonator, so that the filters in Figs. 1 and 2

have n resonators. Notice that the series elements in

Fig. 1 are stipulated to be capacitances, that is, their

susceptances are supposed to be positive and propor-

tional to frequency. Similarly, the shunt elements in

Fig. 2 are stipulated to be inductances,, that is, their

reactance are supposed to be positive and propor-

tional to frequency. (If the transmission line is disper-

sive, these statements are to be modified by replacing

frequency by reciprocal guide wavelength.)

All the filters described in this paper are synchro-

nously tuned [1 ], that is, all discontinuities are so spaced

that the reflections from any two adjacent discon-

tinuities are phased to give maximum cancellation at a

fixed frequent>- (the synchronous frequency) in the pass

band. .4t the s>-nchronous frequency the filter is inter-

changeable with a stepped-impedance half-wave filter

[1], and the ith reactive discontinuity has the same

discontinuity \“SJT’R, Vi, as the ith impedance step

[I], [2]. Impedances are shown for the series-reactance-

coupled filter in Fig. 1 and admittances for the shunt-

susceptance-coupled filter in Fig. 2; then, let

z, Y,
h,=— or —

Y,–1 ‘
(3)

z&l

and

x, Bi
*i=—— or _

z;_l Y-1 -
(4)

Most frequently h,= 1, since usually this is mechanically

the most convenient. Sometimes it may be advanta-

geous for electrical or mechanical reasons to make some

of the characteristic impedance ratios hi different from

unity. For instance, it may be desirable to combine the

filter with an impedance transformer instead of cas-

cading a filter with a separate transformer; also, in

some cases the filter performance can be improved

in the pass band when the values of lz, are selected

carefully, as in Section VIII.
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The tii of the reactance-coupled filter are obtained

from the Vi of the stepped-impedance filter, and the hi,

from

‘i=/(vi+i)h’-(l+hi2)o“)
The graph of Fig. 8 gives some solutions of this equa-

tion. Generally it will be most convenient to select

h,= 1 (that is, all the Z, or Y; equal), and then (5)

simplifies to

(6)

The spacings 19i in Fig. 1 are determined as follows

[2], [6]. A single discontinuity of a series-reactance-

coupled filter is shown in Fig. 9. (A similar notation, but

with Yfor Z and B for X, applies to a shunt-susceptance-

coupled filter. ) It represents the ith discontinuity of

the filter (Fig. 1 or 2). If the reflection coefficients of

this discontinuity in the two reference planes shown are

to be pure imaginary quantities, then one has to set

‘lLiz + hi2 — 1
*; = ~ arc tan

( )
(7)

2ui

Uiz + 1 — hi2

4/’ = +- arc tan
( )

(8)
2hiui “

The spacings 19i in Figs. 1 or 2 are now given (in

radians) by

oi = ; + #i’ + +’;+1.

When hi= 1, these equations reduce to

(9)

(10)

and then

oi=; +*i+$i+l

‘:++[arctan(:)+arc’an(%)] 1‘“-+[arctan(a+arctan(al “’11)
IV. NARROW-BAND HALF-WAVE FILTERS

The main application of this paper is to wide-band

filters. However, since the design of narrow-band filters

is simpler, it will be convenient to use the narrow-band

case to illustrate the method in its simplest form.

When the impedance-steps of a narrcjw-band (Sec-

tion I) stepped-impedance half-wave filter [1 ] are re-

placed by reactance having the same discontinuity

VSWR’S, and the filter is again synchronously tuned

(Section III), then there is little change in the charac-

teristics of the filter in and near the pass-band region.

All the formulas necessary to carry out this conversion

have been given in Section III. It is not necessary to

maintain uniform line impedance (all 2; or Y; the

same), but it is usually convenient to do !jo.

For narrow-band filters, both quarter-wave trans-

formers and lumped-constant low-pass filters will serve

as a prototype, and the conversion fronl either proto-

type into the actual filter is equally convenient. The

choice of prototype depends on two factors:

1) Which prototype results in a filter that meets the

design specifications more closely, and

2) Which prototype design is more readily available.

The quarter-wave transformer is better as regards point

1), but the difference in accuracy is usually negligible

for narrow-band filters; the lumped-constant low-pass

filter, on the other hand, is generally more convenient

as regards point 2). The reason for this is that explicit

formulas exist for the lumped-constant low-pass filter

of n elements [4] whereas the numerical design of

transformers demands great arithmetical accuracy, and
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becomes convenient only for those cases where the solu-

tions have been tabulated [1].

A lumped-constant low-pass filter can serve as a pro-

totype circuit for a narrow-band stepped-impedance

half-wave filter. Eqs. (74) of Young [1] with the sub-

stitution Wg = 2w, reduce to

2 glul’
~l=~n+l. ——

n-w

4 UI’2
Vi = ; ~ g,_lg,, . . ., when 2< i < n, (12)

where w is the fractional bandwidth of the narrow-band

half-wave filter, and the gi are the normalized elements

of the low-pass prototype filter [4]. The reactance are

then obtained from (5) or (6) and the spacings from

(7)-(1 1). The low-pass prototype filter is here assumed

to be either symmetric or antimetric, and element

values for maximally flat and Chebyshev prototypes

of this type can be found in Matthaei, et al. [7]. The

parameter OJ1’ is the cutoff frequency of the low-pass

prototype filter.

Exatn@le:1 It is desired to design a reactance-coupled

half-wave filter to have a pass-band VSWR of better

than 1.10 over a 10 per cent bandwidth, and to have at

least 25 db of attenuation at a frequency 10 per cent

above band center (i. e., twice as far out as the desired

band edge).

This filter can be considered narrow-band, and may

be based on a low-pass prototype circuit, since the ripple

VSWR of 1.10 exceeds the quantity 1 + (2w)2 = 1.04, as

mentioned in Section I.

We must next determine the minimum number of

resonators with which these specifications can be met.

Selecting a quarter-wave transformer of fractional

bandwidth w.=0.20, since w= O.1O, and with V,= 1.10,

the attenuation at twice the band-edge frequency in-

crement (see Example 7 of Young [1]) is 24.5 db for

n =.5 sections and 35.5 db for n = 6 sections. Since the

filter attenuation at the corresponding frequency above

the pass band will be somewhat less than it was, n = 5

is certainly not enough resonators. We then tentatively

select n =6. It will be shown in Section V that the

attenuation in the stop band of the narrow-band re-

actance-coupled half-wave filters of Figs. 1 and 2 differ

from the attenuation of the narrow-band stepped-im-

pedance half-wave filter (Example 7, [1]) by approxi-

mately

ALA = 20(Pz + 1) loglo (jo/j) db, (13)

where f/fo is the normalized frequency (the ratio of the

frequency f to the center frequency f,). This AL* has

to be added to the attenuation of the stepped-im-

pedance filter to give the attenuation of the reactance-

coupled filter.

1 The filter example selected is the same as the one in Cohn’s Fig.
9 [4], and Young’s filter 1 [8]? and corresponds to example 7 in Young
[1], to make it more convement to compare methods and properties.

Let us, for instance, calculate the attenuation of the

filter at f/fo= 1.10. Using (13), with n =6,

ALA = – 20 X 7 X log10 (1.1) = – 5.8 db, (14)

which shows that the filter attenuation is 5.8 db less

than the attenuation of the half-wave stepped filter at

f= 1.1 f,, that is, 35..5 –5.8 =29.7 db. This exceeds the

25-db attenuation specified, which confirms our choice

of n =6. The discontinuity VSWR’S are then given by

(76) of [1]. The shunt-inductance-coupled filter of Fig.

2, with all Y, equal to YO, yields

B, BT
—. — = – 1.780

Vo ro

Bz BG
— = – 6.405

x –x

B3 B5
—_— .— 9.544

x VII

B4
— = – 10.154
Yo

and from (11),

81 = 86 = 147.16°

1

i3z = 66 = 165.41° .

6, = e, = 168.51°

7 (15)

(16)

This filter was analyzed and its computed response

is shown in Fig. 10 (solid line) together with the com-

puted response of the stepped-impedance half-wave

filter (broken line). (The stepped-impedance half-wave

filter has the same characteristics as the quarter-wave

transformer, except for a linear change of scale, by a

factor of 2, along the frequency axis.) It is seen that the

band edges of the filter and its stepped-impedance half-

wave filter prototype very nearly coincide, and that the

peak ripples in the two pass bands are nearly the same

height.

The VSWR ripple in the pass band is very close to

1.10. The quarter-wave transformer design is itself only

approximate, and the ripple heights (broken line, top of

Fig. 10) are not exactly the same, since the transformer

was designed from a lumped-constant low-pass proto-

type (Example 7, [1 ]). The causes of imperfection in

the filter response in Fig. 10 may in this case be as-

cribed partly to 1) the imperfect quarter-wave trans-

former response, since the transformer was derived by

an approximation from a lumped-constant circuit, and

partly to 2) the further approximation involved in de-

riving the filter with its unequal spacings and fre-

quency-sensitive couplings from the transformer.

With regard to the imperfect quarter-wave trans-

former response, there is clearly little room for improve-

ment, as can be seen from Fig. 10. As for the further

approximations involved, one could adjust the line

characteristic impedances to improve the performance

(as is explained in Section VIII), but this would also
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NORMALIZED FREQUENCY — f/f.

Fig. 10—Characteristics of a six-resonator filter and its
stepped-impedance half-wave filter prototype.

result in only a very small improvement. These ad-

justments were not considered further in the present

example.

The attenuation of the filter at j/~. = 1.1 had been

predicted from (13) to be 29.7 db. This gives one of the

circle points in Fig. 10, and falls very close to the curve

computed by analysis of the filter (solid line) ; other

points predicted using (13) also fall very close to the

computed curve.

V. DESIGN FOR SPECIFIED 13AND EDGES

AND STOP-BAND ATTENUATION

Typical characteristics of a quarter-wave transformer

and the reactively coupled filter derived from it are

shown in Fig. 11. The transformer prototype has a

symmetrical response (broken line) on a frequency

scale. Denoting its band edges by ,fl’ and ~2’ (Fig. 11),

the frequency of synchronous operation (Section III) is

also the mean or center frequency,

~o=jl’+hf
—— .

*
L

(17)

The response is symmetrical about $.. When the im-

pedance steps of the transformer are replaced by series

capacitances or shunt inductances, then the new re-

sponse is as indicated by the solid line in Fig. 11. The

following general changes should be noted.

1)

2)

The bandwidth has contracted. (For small band-

widths this is the only change of major concern.)

The lower band edge has contracted (~1’ to~J more

than the upper band edge (~z’ to ~J. If both the

transformer and the filter have the same syn-

chronous frequency fo, then the new mean fre-

FILTER

QUARTER-WAVE--—-
TRFR, PROTOTYPE

? $7 fz

SYNCHRONOUS FREQUEMY : fo. +( f;+ f;)

FIL7EH MEAN FREQUENCY : fm- ~ (f, + fz )

Fig. 1 l—General characteristics of reactance-coupled half-wave
filter and quarter-wave transformer with same discontinuity
VSWRS and same synchronous frequency.

quency (defined as the arithmetic mean of~l andfJ

3)

(18)

is greater than ~0, the frequency of synchronous

tuning. Also, the two curves in the upper stop

band cross each other, and the response is not

symmetrical about &

The ripple amplitude inside the pass band, for a

Chebyshev filter, has not changed appreciably.

(This is not indicated in Fig. 11.)

A. Bandwidth Contraction

We shall define the fractional bandwith w of the

filter in the usual way by

f2 – flw=
fm “

The fractional bandwidth w, of the

wq_jsf-flf.
—

fo

(19)

transformer is

(20)

The bandwidth contraction factor @ is then defined by

and can be obtained from the graphs g;ven in Fig. 12

as a function of R, the ratio (greater than one) of the

output impedance to the input impedance of the trans-

former prototype. For narrow bandwidths, the pass

band is nearly symmetrical on a frequency scale, and

so the bandwidth also determines the band edges.

(For narrow-band filters, P will be close to 0.5, as in the

example in Section IV.) For wide-band filters, the

bandwidth contraction does not give the whole story,

and one has to consider the movement of the two band

edges separately, as will now be discussed.



168 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES May

B. Pass-Band Distortion

It will be shown in Section VII that one would expect

the response to be approximately symmetrical when

plotted not against frequency, but against the quantity

Af _f–fo~=— —

(f/fO)” – (f/fo)a

(22)

as shown in Fig. 13, and that for highly selective filters

(filters corresponding to large transformer output-to-

input impedance ratio R), the exponent a is given

approximately by

a =l+L

n
(23)

where n is the number of transformer sections or filter

‘itttkkH
055

R 103
/“

06

,&
/---

07

10
— — 08

I__-_&
I I I 09 1

r- 1 I 1
‘12. . 5.7s

NUMBER OF SECTIONS — n

Fig. 12–-Bandwidth contraction factor L?as a function of n (number
of resonators) and R (discontinuity-VSWR product.)

0

resonators. (The case a =1, corresponding to large n,

leads to a symmetrical response on a wavelength scale,

as previousI y noted by Cohn [4] using different argu-

ments.)

When R approaches unity, a will approach zero for

synchronous filters for all n, regardless of the frequency

dependence of the couplings. Thus any curve in Fig. 14

must pass through the origin. Similarly, (23) supplies

the asymptotes for the graph of Fig. 14. Eq. (22) can

be made exact for the two band-edge frequencies, j, and

fz, by defining

log (Af,/Af,)
~=

log (f,/fJ

Af, = ft – fO

)Afl=fO–fl “

henceforth be used as

f-f.

‘=&’— (f/fo)”

(24)

(25)

the definition of a.

I ,

xl 0 X2= -x,

Fig. 13—A method of transforming ~he frequency variable to obtain
an approximately symmetrical filter characteristic.

AVERAGE DISCONTINUITY –VSWR—Vay=R ‘/(n+i)

Fig, 14—Pass-band distortion factor, a, vs average discontinuity VSWR, V.., showing the solutions for fourteen
particular cases joined by a smooth curve.
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The parameter a was thus calculated for fourteen widely

different filters, whose response curves had been com-

puted, having from n = 3 to 8 resonators plus one with

n = I resonator, and for bandwidths varying from nar-

row (10 per cent) through medium to wide (85 per

cent). These fourteen points are plotted in Fig. 14

against the average discontinuity VSWR,

J7a” = ~1/(.+1) (26)

It is seen that eleven points can be joined by a smooth

curve running through or very close to them. The three

exceptions are explained as follows: One is for n = 1

(see Section VII), and then by (23I) one would expect

CY= 2, which is indeed the case. The other two points,

shown by triangles, correspond to nonuniform-imped-

ance filters, to be dealt with in Section VIII. It may be

concluded that the curve in Fig. “14 can generally be

used to obtain the pass-band distortion factor a for

filters with uniform line impedances (all 2; equal to ZO

in Figs. 1 and 2), and having more than about n = 3

resonators.

It can be shown from (24) and. (25) that the fre-

quency displacement fm –fo is given by

*= f.–fo Afz– Afl ‘A–1 w
— .

f. 2fm = ( )],A+l T

where I
log A = log (Af,/Ajl)

Ii

. (27)

= ~ log (f2/fl)

2+W

()
=a log —

2–w
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FRACTIONAL BANOWIDTH — W‘~Wq

Fig. 15—Relative displacement of mean frequency from synchronous
frequency, 6 as a function of fractional bandwidth for several
values of a.

This equation is exact when (24) is regarded as a defini-

tion as it is here. Eq. (27) is plotted in Fig. 15, showing

the relative mean-to-synchronous frequency displace-

ment, ~~ —~J /f~ as a function of the fractional bandw-

idth, w, for several values of the parameter a. [When

a = O, the displacement (fm —fO) is zero. ]

This completes the discussion of the effect on the

pass-band edges of changing the discontinuities from

impedance steps to reactive elements. lNe shall now

show how the stop-band attenuation is affected by this

change.

C. Stop-Band Attenuation

A simple procedure will be developed for predicting

the skirt of the filter response. The approximations

made are such that this prediction holds closely over

most of the rising portion of the skirt, but will be rela-

tively less accurate very close to the bancl edge, as well

as past the first attenuation maximum above the pass

band; these are not serious limitations in practice. (The

accuracy obtainable will be illustrated by several ex-

amples in Sections VI and VII I.)

The excess 10SS [1], &, of a stepped-impedance half-

wave filter is

~avail.ble _ ~ = (R – 1)2 T.’(sin O/po) , (28)
z=

Plmd 4R Tn’(l/pJ

where R is the product of the discontinuity VSWR’S,

R = VIVZV3 “ “ “ ~,,+1. (29)

Here, T. is a Chebyshev polynomial of order n, and

p, is a constant [1]

()mg
pa=sin —.

4
(30)

The response of the reactive-element. filter is also

given by (28) except that R is no longer constant, since

the Vi become functions of frequency as a result of the

changing susceptances or reactance. Therefore, at any

frequency f (and for the shunt-susceptance filter of

Fig. 2)

[4+ (BJ’ Yo)’(.fo/f)’]’” + (M ~o)(fd.f) ~31)

“(f) = [4+ (B,/ Yo)’(fo/f)’]’” - (Bi/ vo)(jo/j-)

when all the line impedances are equal. [For the sc:ries-

reactance filter of Fig. 1, substitute (XJZJ for (Bi/ YO). ]

For large enough Vi and Bi, (31) reduces approximately

to

Vt(j) = (B Jo/-f) 2. (32)

This equation is accurate to within 20 per cent. for

]BI>3, 8percent for IBI>5, 2 percent for IBI>7,

and 1 per cent for I B \ >8. For smaller I B I , (31) should

be used. The numerical solution of (31) for.~ =~0 is the

curve marked k = 1 in Fig. 8.
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The attenuation of the filter on both skirts of the re-

sponse curve may be estimated simply and fairly ac-

curately from the known attenuation of the transformer

prototype. Using (32), R becomes a function of fre-

quency such that approximately

R cx (j_o/’) 2 @+l), (33)

and by (28) the attenuation will be multiplied by the

same factor when R is large. [More accurately (31)

rather than (32) should be used when some of the V,

are small. ] Thus to estimate the filter attenuation at a

specified frequency not too close to the band edge, we

may first find the transformer attenuation in decibels

at the corresponding frequency and then add 20 (n + 1)

Ioglo (~0/~) db, as already stated in (13).

By the corresponding frequency, we here mean that

frequency on the quarter-wave transformer charac-

teristic, f’ (Fig. 11), which is obtained from a linear

scaling

(34)

or

j’_j
f;-~’

(35)

depending on whether the frequency f is below the

lower band edge, f,, or above the upper band edge, fz

(Fig. 11).

The stop-band attenuation of the filter can thus be

predicted fairly accurately from the prototype trans-

former characteristic. More often the reverse problem

has to be solved. Thus the quantities specified may

include the stop-band attenuation of the filter at some

frequency, besides (for instance) the pass-band ripple

and bandwidth; it is then required to find the minimum

number of resonators n to meet these specifications.

This problem can be solved explicitly only for the proto-

type circuit [1]. To find the number of resonators n for

the reactively coupled half-wave filter to meet a speci-

fied pass-band ripple, bandwidth, and skirt selectivity

(stop-band attenuation), requires trial solutions in

which numbers are assumed for w until the filter meets

the specifications. Where (33) and (13) are valid, this

can be worked out quickly as illustrated in the example

of ,Section IV. Otherwise (29) and (31) should be used;

the numerical solution is facilitated by the graph in

Fig. 8. Usually it is not necessary to solve for all the ?’,,

but to solve only for one average discontinuity VSWR,

V,., given by (26) which saves time in making the calcu-

lations. This method is used in the last example of Sec-

tion VI.

This completes the necessary background material

required for the selection of transformer prototypes

which will lead to filters of specified characteristics. The

design procedure will now be summarized.

D. Summary of Design Procedure

The design procedure to be followed then consists of

the following steps:

1)

2)

3)

4)

5)

From the filter specifications select a quarter-wave

transformer prototype that may be expected to

yield a filter with nearly the desired performance.

(The selected transformer will have the same pass-

band ripple as specified for the filter.)

Determine ~ from Fig. 12, and so estimate w =f?wQ.

If w is not as specified, repeat with another trans-

former with different bandwidth w, until this

specification is met.

Determine a from Fig. 14, and then d = (’f. –~o)/j.

from Fig. 15. If (j~ –fo) is small enough to be

neglected (as will generally be the case for filters

below about 10 per cent bandwidth), omit Steps 4)

and 5).

If (j~-jo) is significant, find fo from

fo = (1 – Ofm. (36)

This is the synchronous frequency, which is also

the center frequency of the transformer.

The upper and lower band-edges, fz and fl, are

next found from

()
f,=fm 1+;

1 + zO/2
= j,

() 1–6

and

()j,=jm 1–;

1 – w/2
= f.

() 1–8

(37)

6) The values of the reactance or susceptances and

their spacings are given by (3)–(11), and must be

determined at the synchronous frequency f,.

VI. EXAMPLES OF FILTERS HAVING MEDIIJM

AND LARGE BANDWIDTHS

In this section, two further examples will be given,

illustrating the design of a medium-bandwidth (20

per cent), and a large-bandwidth (85 per cent) filter

(all of the type shown k Figs. 1 and 2). Thek predicted

and analyzed performances will be compared to show

how accurate the method may be expected to be.

.4. A 20 Per Cent Bandwidth Filter

It is required to design a filter with four resonators to

have a pass-band VSWR of better than 1.10 over a 20

per cent bandwidth.

Thus n=4. w= O.20. T~. =1.10.
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Here V,= 1.10 is less than 1+(2~)2= 1.16, but not

very much less; reference to Section I suggests that

this is a borderline case for which the low-pass proto-

type will not work too well, but is worth trying. Using

(12) and (6), one obtains

BI B5
.— . – 0.842

m ITo 1
I

Bz B4
— . — 2.607 \ (38)

Yo– Yo–

Bs
— – – 3.758—

Yo

with

0, = %4 = 127.67°~

8, = 8, = 147.24°{ ‘
(39)

which also corresponds to a quarter-wave transformer

or half-wave filter that would have

V, = t’, = 2.27]

V, = V, = 8.6+ (40)

V, = 16.07j

The product R = V1 V2 . “ “ Vij is equal to 6215 which

is only about ten times (l/w)n = 1(1/0.2)4= 625, which

confirms that this is a borderline case. [See (2). ]

The analyzed performance curves of the filter defined

by (38) and (39), and the stepped-impedance half-wave

filter defined by (40), are plotted in Fig. 16. Neither

characteristic meets the specifications very closely be-

cause the narrow-band condition, (2), is not satisfied

well enough.

Let us redesign the prototype quarter-wave trans-

former, or stepped-impedance half-wave filter, and

derive the reactance-coupled filter from the quarter-

wave transformer prototype. Selecting n =4, wq = 0.40,

V,= 1.10, which by Table I of Young [1] gives R=5625,

yields

v, = 13.71 )

These VSWR’S do not seem to differ greatly from those

in (40), yet they will be enough tcl turn the broken-line

characteristic in Fig. 16 into an equi-ripple prototype

response and greatly improved filter response.

From Fig. 12, for n=4 and R=5625, one obtains

O= 0.52, so that we would expect the reactance-coupled

filter bandwidth to be w =~w,, = 0.52 XO.40 = 0.208.

From Fig. 14, for

we read off a = 0.65. Hence, from Fig. 15, 6 = 0.0064.

Then, from (37)

f, = l.llofo

f, = o.902fo }
(43)

where ja is the synchronous frequency.

For the reactance-coupled filter derived from (41)

using (6) ~nd (11) (which assume that h,= 1),

BI B5
. – 0.902

—=xYil

B2 B4
— .

-~

– 2.563 , (44)
E–YO

BS
== – 3.436

‘E

and therefore

(3I = 01 = 128.15°

}Oz = OS = 145.92° “
(45)

The analyzed response of the stepped-impedance half-

wave filter prototype corresponding to the exact

Chebyshev transformer design (41) is shown by the

broken line in Fig. 17, and the reactance-coupled filter

1.18
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response is shown by the solid line in that figure. This is

an appreciable improvement on the performance of the

preceding filter and transformer design based on the

first procedure using the lumped-constant low-pass

prototype. The analyzed performance of the filter shows

that jl = 0.909~0 (compare 0.902~0 predicted) and

~z = 1. 103~0 (compare 1. 110~o predicted). The fractional

bandwidth w is 0.193 (compare 0.208 predicted), and

the relative mean-to-synchronous frequency displace-

ment 6 = (f~ –jo)/~~ is 0.006 (just as predicted).

It is clear, comparing the solid and broken lines of

Fig. 17, that there is still room for improvement. The

main discrepancy between predicted and analyzed per-

formance is in the bandwidth, which is 1.5 per cent less

than predicted. The reason for this is the difference in

the frequency sensitivities of the resonator lengths; this

difference is typical of filters in which some of the dis-

continuity VSWR’S are in the neighborhood of 2.o, and

others differ appreciably from the value 2.0 [see (41) ].

The reason for this will be explained in Section VII. This

example will then be continued in the first example of

Section VII I where it will be shown that the line-length

frequency sensitivities can be equalized by optimizing

the line impedances (instead of setting them all equal

to each other). This generally leads to a very nearly

equal-ripple characteristic with slightly more than the

predicted bandwidth.

B. An 85 Per Cent Bandwidth Filter

A pseudo-high-pass filter of eight sections is to be

designed to have a pass-band frequency ratio fz/f~ of

approximately 2.5:1, and a pass-band attenuation (re-

flection-loss) of less than 0.1 db.

Since fZ/fl = 2.5,

W=2 f2–fl ~085()f,+”f, “ “
(46)

We design a quarter-wave transformer prototype by

the modified first-order theory [1], specifying WQ = 1.40,

and a O. 2-db pass-band attenuation ripple. (This ap-

proximate method always gives slightly less bandwidth,

and slightly less ripple, than specified.) The modified

first-order theory gives

VI = 1’, = 1.348)

Vz = Vs = 1.561

1’s = V7 = 1.829 . (47)

V, = v, = 1.985

Vb = 2.034

The computed response is shown by the broken line

in Fig. 18, and it is seen that it has a pass-band attenua-

tion of less than 0.12 db over a 135 per cent bandwidth

(w. = 1.35). The quarter-wave transformer output-to-

input impedance ratio R is

R = V1V2 . . . V9 = 118.4. (48)

From Fig. 12, the bandwidth contraction factor is

@= 0.63, and the expected fractional bandwidth of the

filter is therefore w = 13w, = 0.85, which is the specified

bandwidth.

We also find from Fig. 14 that for V., = (1 18.4)1/9

= 1.70, a= O.36. Then, from Fig. 15, one obtains d= O.06.

.-
NORMALIZE FREQUENCY — f/f.

Fig. 18—Characteristics of an eight-resonator filter and its quarter-wave transformer prototype.
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Therefore, by (37), we shall expect

j, = 1.52jo

}fl = 0.61j0 “
(49)

For the reactance-coupled filter derived from (47) by

use of the equations in Section III with k,= 1,

BI B9 \
—. — – – 0.2998
Yo=h -

B, B8
– 0.4495

~,. = ~,. =

BX B7
— — – 0.613 ~,

vo– Yo–
(50)

Bb B.
– 0.700

-X=YO’

Bs
—= – 0.72.5--

and

Yo

& == I!?*= 100.60’”

0, = 67 = 104.85c’

OS= OS= 108.17”

01 = OS= 109.61”

The response of this filter was analyzed and is shown

by the solid line in Fig. 18. It is seen that the attenua-

tion in the pass band is everywhere less than 0.1 db,

the fractional bandwidth w is 0.8!5, the band edges are

fz=l.53 and fl=0.62, and the relative mean-to-

synchronous frequency displacement is 0.075; all of

these are very close to the predicted values.

The stop-band attenuation was worked out at two

frequencies, as explained in Section V. [Fig. 8, based on

(31), was utilized in this calculation.] These two points

are shown by the small rings in Fig. 18, and fail very

close to the curve obtained by analysis on a digital com-

puter.

It is possible to increase the selectivity of a filter by

adding more resonators. Good results have been ob-

tained by taking a design with fewer resonator-cavities

than necessary to obtain the required stop-band attenu-

ation, and then adding more cavities by repeating the

middle cavity as often as necessary. For instance, the

design given in (50) and (51) was modified as follows:

The central elements, which are nearly the same (0.700,

0.725, 0.700), were set equal tc) their average value

(O. 71). More elements with this value were added,

spaced for synchronous tuning, as in (1 1), and the

response computed up to 1.5 resonators [9]. It was

found that the pass-band ripple amplitude and band-

width changed very little, while the skirt selectivity in-

creased with each added cavity.

VII. DERIVATION OF THE DATA FOR 13ANDWIDTH

CONTRACTION AND PASS-BAND DISTO~TIO~

The basic ideas on the conversion of the quarter-wave

transformer prototype into a filter with reactive ele-

ments have already been explained. The design pro-

cedure and numerical data were presented, mostly

without proof. We now proceed to fill in the details of

the over-all picture present thus far.

.4. Bandwidtlb Contraction

The frequency sensitivity [1], [2] (and hence band-

width) of the reactance-coupled filters of Figs. 1 and 2

is strongly influenced by the angles +’ and +“ in Fig. 9,

which correspond to the electrical distances between

the coupling reactance and the two reference planes

with pure imaginary reflection coefficient t on either side

of it. Both reference planes move closer to the reactance

as the frequency increases, partly 1) because a given

electrical separation shrinks in physical length as the fre-

quency increases; and partly 2) because the electrical

lengths ~’ and ~“ do not remain constant, but decrease

with increasing frequency for shunt inductances (or

series capacitances), since their susceptance (or react-

ance) values decrease with frequency. The movement

of the reference planes is measured quantitatively by

two parameters d’ and d“ defined by

[

d+”
d,,=? +ti_—

T 1W/fo) f=fo ‘

(52)

(.53)

where the first term in the square brackets corresponds

to Cause 1), and the second term to Cause 2). The

parameters d’ and d“ measure the rate of change with

frequency of the reference planes in Fig. 9, as compared

to the rate of change of a 45° line Iengtlh. The spacings

19, (Figs. 1 and 2) between reactance are given at band

center by (9). The spacings are thus always longer elec-

trically than 90°, and accordingly increase with fre-

quency faster than does a quarter-wave length of line.

The bandwidth of the filter is thus alwa~-s less than the

bandwidth of its quarter-wave transformer prototype

by a factor /3. The bandwidth contraction factor asso-

ciated with the ith resonator or line section ~, is given by

12 dO,

[ –1 d;’ + d;+l
=1+——— ~ (54)

z== Wf 0) .f=f, 2

If all the ~, defined in (54) were the same for a particu-

lar filter, then its bandwidth would be

w = flwq, (55)

where Wq is the quarter-wave transformer bandwidth.

Usually the ~; are not all equal; the smallest of the pi

should then be used for O in the above equation since

the most frequency-sensitive resonator tends to deter-

mine the filter bandwidth.
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Fig. 19—Chart determining frequency sensitivities of individual resonators over small frequency bands.

To cover both the series-reactance-coupled and the

shunt-susceptance-coupled filter in Figs. 1 and 2, we

shall use the word immittance when we mean impedance

for the former (Fig. 1) or admittance for the latter (Fig.

2). When the line immittances are all equal, then

d,’ = d,”, but when the line irnmittances are not all

equal, the d~’ and di” are not equal. The larger d, is

associated with the ~~ in the line with lower imittance,

and is given by the solid lines in Fig. 19; conversely, the

smaller di is associated with the +{ in the line with higher

immittance, and is given by the broken lines in Fig. 19.

The curves in Fig. 19 were worked out for infinitesimal

bandwidths, following (52) and (53). The curves in

Fig. 20 were worked out for several finite bandwidths,

replacing the differential terms in (52) and (53) by finite

increment ratios. Only filters with uniform line immit-

tances (Li = 1) are shown in Fig. 20. Fig. 12 was then

worked out with the aid of the curve h = 1 in Fig. 19,
which is the same as the curve w = O in Fig. 20.

It has been found that Fig. 12 has predicted band-

widths closely for all the filters analyzed. The accuracy

is least for filters that have a considerable spread among

their (3;. According to (54) and Figs. 19 or 20, this occurs

when the discontinuity VSWR’S in one filter range into

and out of the neighborhood of 2.0, where d can change

appreciably in either direction (see Figs. 19 or 20). In

that case it may be worthwhile to optimize the line

impedances, as in Section VIII.

B. Pass-Band Distortion

The distinction has already been made between the

synchronous frequency fo and the arithmetic mean fre-

quency f~, which is always greater than fo, since the por-

tion of the pass band above the synchronous frequency

is greater than the portion below. This phenomenon is

due to the declining discontinuity VSWR’S with increas-

DISCO NT, N”, T” “SW. — “

Fig. 20—Chart determining frequency sensitivities of individua~
resonators over various fractional bandwidths, W, when the line
impedances are constant.

ing frequency when series capacitances or shunt in-

ductances are used, and may be put on a quantitative

footing as follows.

The excess loss has ah-cad y been cited in (28). Con-

sider now the case of large R, so that the approximation

(32) holds. The largest term of the Chebyshev poly-

nomial well inside the stop band is the highest power of

(sin O/IJO), and then (28) reduces to

P~V~il sin2n O
E=— –1 = const.

Plo,d (f/fo) 2(n+l)
(56)

= const.
[(f,;:+.]’”, ’57’

where Af=f–fo. This proves the result stated in (22)

and (23) ; for large n and large R, the exponent of (~/fO)

reduces to unity, leading to a more symmetrical response

on a wavelength (rather than frequency) scale. As a

counter-example, a single-resonator filter (n = 1) was

analyzed and a caculated from (24). The response of

this filter (n= 1, R = 1000) is plotted in Fig. 21, and it
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Fig. 21—Characteristics of a single-section filter and its quarter-wave
transformer prototype.

was found that (using the 14-db baud edges for conven-

ience) a = 1.97, which is close to 1 + l/n = 2.0 as required

for n =1. This point is shown square in Fig. 14.

The circle points in Fig. 21 were calculated using the

approximate (13) in conjunction with the prototype

characteristic. This method is seen once again to give

excellent results.

The choice of mapping or frequency distortion by a

function of the form A~/(~/~0)”, was based on the above

considerations, and is further developed in Section V.

VII I. OPTIMIZING THE LINE IMPEDANCES

It was pointed out in Section VII that different line

sections of a single filter yield different bandwidth con-

traction factors ,8i, because the quantities d,’, d,” vary

from resonator to resonator. So far we have only con-

sidered examples of filters with uniform line impedances,

where all Z, are equal to ZO. In deriving the discontinu-

ity parameters, the discontinuity VSWR is always set

equal to the corresponding step VSWR of the proto-

type transformer; this VSWR can be obtained in the

filter by an infiuity of combinations of reactance with

impedance ratios since the two parameters h and u (Fig.

9) produce the desired discontinuity VSWR. Thus, if

~r; is given and lt, is selected, X, or B, is determined

from (4) and (5). The problem is now to select hi, l’,

being given, so that all the 6, are the same. This can

easily be done with the aid of Fig. 19, and is best

illustrated by an example.

A. A 20 Per Cent Bandwidth Filter with Optimized Line

Iwzfiedances

It is required to improve the perfortnance of the

filter defined by (44) and (45) and shown by the solid

line in Fig. 17.

We see from (41) that the l’, range in numerical

value from about 2 to nearly 14. Thus the different

resonators have appreciably different f?,, and we might

expect a noticeable deviation from an equal-ripple

response, as already pointed out for this situation.

I-Iere we have a four-resonator filter. The two central

resonators, 2 and 3, are each flanked by discontinuity

VSWR’S of 8.45 and 13.71, according to (41). Keeping

the characteristic admittances of the lines forming the

four resonators the same, we find from Fig. 19 that

d,” = 0.88 (corresponding to h =1, ?7= 8.45) and

d?’ =0.93 (corresponding to A =1, i’= 13. 71), so that for

the two central resonators.

d;’ + d8’ da” + d;

= 0.905.
2=2

(58)

If we kept the input and output admittances the same

also, so that k = 1 at both the first and last discontinu-

ities, then for T7=2.398, (41), we would have dl” =0.50,

which is considerably different from the other d. Since

dz’ =dz” =0.88, this would yield (dl’’+dz’)/2 =0.69 for

the outside resonators, which differs appreciably from

0.905 for the cemtral resonators. Hence the relatively

poor response shape in Fig. 17. To obtain a value of

(dl’’+dZ’)/2 equal to 0.905, as for the central resonators,

requires dl” = d,’ =0.93. We then find the value of h

from Fig. 19. Finding the intersection of the horizontal

line for d = 0.93 with the vertical line for T“= 2.398 gives

h = 2.38. one then obtains the following filter param-

eters:

YI F2 V3 1“4 1
— _— .— ._—–x– Y.

= 0.4202 (59)
T; Yo 2.38

B, Bb
\

– – 0.7895~=~–

Bz Bl
— – 2..564 (60)

l-l = 1’1 –

B,
— – 3.433

YI – J

0, == 01 = 158.74°

}
(61)

0, = 0, = 145.92° ‘

The predicted bandwidth is

(62)w = puq = 0.40/1.905 = 0.210.

The appearance of such a filter with shunt-inductive

irises in waveguide, or with series-capacitive ,gaps in

strip line, is shown in Fig. 22.

The analyzed perfortnance of this filter is shown by

the solid line (marked C) in Fig. 23. The original design,

obtained from a constant low-pzLss prototype through

(12) and (6), is shown for comparison (curve A); the

performance of the filter based on the same transformer

prototype as curve C, but with wniforvz line impedances

(all h,= 1: see Section VI) is also shown (curve B). It

is seen that the new design, after optimizing the line

impedances, gives an almost equal-ripple respQnse, Its
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(a)

(b)

Fig. 22—Filters in which the line impedances change.

7
5
!2

Fig. 23— Cha~acteristics in the pass band of three filters
designed to the same specifications.
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60 — AND PREDICTED POINTS (01

\.
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50 – \.
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: 40 —

I
/-

N /

\

20 – \
\

\

10– /

I
10 12 14 16 la”

NORMALIZE FREQuENCY — flfo

Fig. 24—Characteristics in the stop band of the
three filters described in Fig. 23.

bandwidth is 21.8 per cent, slightly more than the 21,0

per cent predicted.

The distortion factor a worked out from (24)

amounts to 1.33, and is shown by the upper triangle

point in Fig. 14. It does not fall in line with the points

calculated for the constant-line-impedance filters. Most

of the improvement in bandwidth is due to an increase

in the upper band-edge frequency (Fig. 23) which has

the effect of increasing a. A possible explanation is that

V-l and Vb are largely determined by the impedance

step, which is independent of frequency, whereas the

other VSWR’S ( V2, V8, and VA) are determined by re-

actance which decrease as the frequency rises. This

corresponds, on the high-frequency side, to having the

filter turn into a wider band design, thus pushing the

upper band edge even further up. The reverse holds

(the VI increase) below band center, which here partly

cancels the improvement in bandwidth due to making

all ~, equal to one another, and so the lower band edge

moves less. Thus a increases by (24).

The pass- and stop-band responses of the two filters

based on the same quarter-wave transformer protot~pe

are shown in Fig. 24, along with the response of the

transformer, The circle points were calculated for the

uniform-line impedance filter curve (B in Figs. 23 and

24) by the method described in Section V.

b. A 30 Per Cent Bandwidth Filter

The following example is worked the same way as

the previous one, and only the results are given. It is

based on the following prototype Chebyshev trans-

former:

fz=4
\

R = 100

1
w~=O.6 ‘

(63)

Ripple VSWR = 1.07j

giving

VI = V, = 1.538

1
v, = v, = 3.111 . (64)

Vs = 4.368)

Transformed into a filter with uniform line impedances,

the reactance parameters and line lengths are

Bl B5
— – – 0.433.5—

Yfl = Y(I

Bz BJ
— = – 1.1971

z“ro

B3
– 1.6115

YLl –

!91= 04 = 111.57°

)0, = 61a= 124.88° “

(65)

(66)

This example has been selected because of the appre-

ciable spread of Vi about the numerical value 2.

With these values of V, and all Z,= 2,, Fig. 19 shows

a considerable variation in d from about 0.25 to 0.75,

and we would expect these different frequency sensi-

tivities to result in a poor response shape. This is borne
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out in Fig. 25, in which curve A is the filter response

analyzed on a digital computer. It has a bandwidth of

30.7 per cent, compared to 34.7 per cent predicted.

To optimize the line impedances, Fig. 19 determines

k = 1.5 for the end couplings, and one obtains

v, l-z F3 F4 1
- == 0.6667

Yo = 1’0 = JTo = Yo ‘1.5
(67)

BI B5
—— – 0.1198. . — .- 1

J’o J’(J I
Bz Bh

– 1.1971
Y1= Y,=

BS
— – 1.6115

YI – 1

8, = 0, = 142.62”

}O* = 13z= 124.88” “

(68)

(69)

The physical appearance of this filter would again be

as indicated in Fig. 22. The response of the filter was

analyzed and is plotted as curve B in Fig. 25. Again

there is very nearly an equal-ripple response, and the

bandwidth is 36.2 per cent, which is slightly more than

the 35.8 per cent predicted. Most of the improvement

in bandwidth occurs above the band center. A possible

explanation for this effect was offered in the previous

example. The distortion factor a here equals 1.07 and is

shown by the lower triangle point in Fig. 14.

Nlost of the end-coupling VSMIR of 1.538 is due to

the impedance ratio of 1.50, and only a small part is due

to the normalized susceptance of 0.1198. Since most of

Vl= t“~= 1.538 is due to the 1.5:1 impedance step,

it is of practical interest to investigate what happens

to the performance when the reactance B 1 and B6 are

left out, and the impedance ratio is increased to 1.538:1

to achieve the desired VI and 175. The result is

Y, Y2 Y3 Y4 1
— — — = 0.6502

~– YO – Y. – Y. ‘-1.538

B, BE,
—=0

)—
Z–YO

I
B, B4

— — 1.1971
Y-Y 1-- 1

B,
— – 1.6115

YI – 1

(70)

(71)

(72)

The analyzed performance of this filter is shown in Fig.

25 by curve C. This filter has passed beyond the opti-

mum performance; the peak reflection has almost

doubled in the pass band, and the ripples are no longer

equal. Even so, this performance is better than the

first design with uniform line impedances (curve A).

II I END- COUtiLINGS~-

14 I I Y I I I I I I
/

10
06 0.7 08 09 10

NORMALIZED FREQUENCY — f/f.

Fig. 25—Pass-band characteristics of three filters
designed for 30 per cent bandwidth.

FILTER WITH——

A—— __ CONST&[~T IMPEDANCES

B— OPTIMUM tMPEUANCES
c— STEPPED-IMPEDANCE

END-COUPLINGS

‘L-J!L_&f
05 !0 20

NORMALIZED FREOUENCY — f{fo

Fig. 26—Stop-band characteristics of three iilters designed
for 30 per cent bandwidth.

The pass-band and stop-band characteristics of all

three filters are shown in Fig. 26, and are in the ex-

pected relationships to each other, since tlhe end cou-

plings of design A have the most capacitance, and those

of design C have none.

IX. CONCLUSION

Design procedures for reactance-coupled half-wave

filters have been given, based on quarter-wave trans-

former prototype circuits. Each filter has the same

number of discontinuities as its step-transformer proto-

type with corresponding discontinuities of the filter and

step transformer having the same VSWR. Both the

filter and its prototype were synchronously tuned cir-

cuits, which means that adjacent discontinuities had

out-of-phase reflection coefficients giving the maximum

cancellation. This condition determines the spacing

between discontinuities. It was also shown how the line

impedances of a reactance-coupled filter may be chosen

to obtain a nearly equal-ripple response.

Design data and graphs were given to facilitate the

prediction of filter performance when the filter is based

on a selected prototype transformer. The method of
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design is to first select a prototype transformer and then

to see if the predicted filter performance matches the

specifications, If necessary, another prototype trans-

former has to be selected to yield another filter meeting

the specifications more closely. This was illustrated by

several numerical examples having fractional band-

widths from 10 to 85 per cent.
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