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If we are interested in these mean values for only a

limited frequency range f. <f <fb, write T= L/c for the

time requirecl for a wave to propagate the length L of

the line, and assume that the spectral density function

zu(~) has a uniform value zoo between f. and fb (as it does

by even the quantum mechanical form of the Nyquist

noise formula up to nearly the highest microwave fre-

quencies in current use):

~ = ~wo(f~– fa) and ~ = ~~~’(f b -- fa). (29)

Eliminating WO by substituting the first of these formu-

las into the second and redesignating T as At and

j, –fa as A~ gives

—2
E

~=_

AtAf “
(30)

Rice~O,ll obtains for the mean energy dissipated in a

one-ohm resistor by a noise current with uniform

spectral density W. during time T in bandwidth fb—f.

z = Two(jb – f(’), (31)

and for the mean-square energy fluctuation

UT2 = W“vr(fb — f.). (32)

By similarly eliminating WO between these formulas, this

mean-square fluctuation formula can also be converted

to the characteristic form E2/AtAJ.
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On the Resolution of a Class of Waveguide

Problems by the Use of Singular Integral

L. LEWIN~

Surnmarp—It is shown that a considerable number of solutions

of rectangular waveguide problems appearing in the literature are all

special cases of a general treatment focused around the known solu-

tion of a singular integral equation. In terms of this a number of
typical results are re-examined. The method is then applied to four
new conEgurations, and the range of application and the limitations
are examined.

I. INTRODUCTION

F

r HE number of waveguide problems capable of

exact solution is limited to a few very simple

shapes, even when the common approximations of

ideal geometry and infinite wall conductivity are made.

A class of problems recently amenable to exact treatment

has involved configurations in which the discontinuity

has separated the space into two uniform regions,

z <O and z >0. Examples are the radiation into free

space of a semi-infinite length of guide, a bifurcation of

the waveguide, and, exceptionally, a diaphragm half-

way across the guide. The solutions involve the setting

up of an integral equation for the field along the guide

axis, or some other equivalent axis, the integral equation

taking a different form on either side of the discon-

tinuity. It is then solved by the Wiener-Hopf technique,

* Received by the PGMTT, March 8, 1961.
~ Standard Telecommunication Laboratories, Harlow, Essex,

England.

the \vaveguide parameters

from the solution.

Discontinuity

Equations*

being readily obtainable

This method gives a rigorous result for the limited

number of configurations to which it can be applied. It

is not. successful, however, in the majority of those

cases in which the discontinuity takes the form of a

variation over the cross section of the waveguide, such

as, for exalnple, diaphragms, strips, change of guide

cross section, etc. Nor is it applicable to configurations

in which the propagation medium changes at the dis-

continuity, e.g., if there is a dielectric or ferrite insert.

For such cases it is more satisfactory to take the field

over the cross section as the unknown variable, and a

different type of integral equation can be set up for this

class of problems. The Wiener- Hopf technique is no

longer usuable, but the equation can be solved to various

quasi-static degrees of approximation in some particular

cases. This has been done by Schwinger and co-authorsl

for waveguide diaphragms, and by Lewinz,8 for u n-

‘ N. Marcuvitz, “lJTaveguide Handbook, ” M.1.T. Rad. Lab. Ser.,
McGraw-Hill Book Co., Inc., New Yorkr N, Y., p. 147; 1951.

2 L. Lewin, “The impedance of unsymlnetrical str]lps in rectangu-
lar waveguides, ” PFOC. IEE, vol. 99, pt. 4, pp. 168-176, Monograph
No. 29; 1952.

3 L. Lewin, “A ferrite boundary value problem in a rectangular
waveguide, ” Proc, IEE, vol. 106, pt. B, pp. 559–563; ~ ovember, 1959.
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symmetrical waveguide strips, and for a ferrite-loaded

guide section. Schwinger4 has also used conformal trans-

formation methods to obtain expressions for the wave-

guide parameters without obtaining in explicit form

the integral equation solution. This last method is very

powerful, and its results include those for some of the

diaphragm configurations, otherwise obtainable b>- the

direct solution of the quasi-static integral equation.

However, not all such configurations can be catered

for in this way; and it appears that a direct solution of

the quasi-static integral equation is necessary for un-

symmetrical inductive configurations, changes of propa-

gation medium, reactive strips, and others.

It is with this latter class of discontinuities that this

paper is concerned. The equations have occurred

sporadically in the literature and have been solved by

ad hoc methods. It is now realized that they are all par-

ticular cases of a general treatment which has a wide,

albeit limited, field of applicability. The paper outlines

first the known examples mentioned above, as particu-

lar cases of the general treatment, and finishes with a

few new examples and an indication of the types of con-

figuration to which the method should be successful. It

does not, of course, displace the earlier treatments;

rather it extends the range of problems that can, to the

various quasi-static degrees of approximation chosen,

be rigorously solved.

II. INDUCTIVE DIAPHRAGM

Fig. 1 shows an inductive diaphragm in a rectangu-

lar waveguide. A wave in the dominant mode,

Ez ==sin (ry/a)e–Ik’z, is incident from z = — ~ and sets

up a reflected wave, a transmitted wave, and a train of

evanescent modes on both sides of the diaphragm. The

field in the aperture, E(y), is as yet unknown, but in

terms of it, by a Fourier expansion, the amplitudes of

the various modes can be expressed. The continuity of

tangential magnetic field over the aperture leads to an

equation containing the mode amplitudes, and if these

be expressed, as above, in terms of E(y) an integral

equation for E(y) results. This equation can be sim-

plified by an integration by parts, and, in terms of the

unknown diaphragm susceptance, B, takes the formb

B sin (~y/a)
s

F(q) cos (7rq/a)dq

(1)

—— – ~ (A~/a) (1 – 6,,) j’F(v) sin (n7ry/a) cos (nr~/a)d~.2
Here F(v) = E’ (q), the variable of integration, ~, rang-

ing only over the aperture, which is also the range

of y over which (1) has to hold. The quantity

~. = 1 – (1 – k2aA/#@)’lZ is a small quantity, vanishing

for high-mode number, n, and is a measure of the de-

Fig. l—Inductive diaphragm in rectangular waveguirle.

parture of the nth mode from its quasi-static value. As a

first approximation it can be neglected. As a second, the

first one or two coefficients are retained, with a cor-

responding higher-order solution resulting. The reten-

tion of these higher-order terms does not affect the

method of solution, though it complicates it. They will

therefore not be considered here, though their inclusion

at any point is relatively straightforward.

In order to solve (1) with 8,, neglected, we add and

subtract the first term of the infinite series, summing it

via the known result

m cos (rz7ry/a) cos (rz2rq/a)z
1 ‘n

—-- ; log 2 ] cos (7rq/a) - cos (Ty/a) I .

On differentiation with respect to y this gives

and substituting into (1) gives

(2+ 2aB/X,)
s

F(v) cos (q/a) dq

-J
F(q)dV

— — , (3)
COS (7rq/a) — cos (fry/a)

where, as before, the range of both y and q is the dia-

phragm aperture.

Now the whole of the left-hand side is some constant,

C, independent of y. If we take new variables

X = cos (mq/a), Y= cos (Ty/a) and put F(~)dq = G(X)dX

then (3) becomes

s

B G(X) dX
c A< Y<B.

x–Y=–
(4)

A

Here .4 and B are the new limits for X corresponding to

the aperture limits for q. The inclusion of higher-order

terms would add a polynomial in Y to the right-hand

side; otherwise the form of (4) is unaltered.

The principal value of the integral in (4) is to be

understood. Hence (4) is a singular integral equation,

and we can appeal to the theory of these equations for

its solution. A convenient reference is Tricomi,c where

d Marcuvitz, op. cit., p. 156.
5 L. Lewin, “Advanced Theory of Mraveguides, ” Iliffe and Sons, e F. G. Tricomi, “Integral Equations, ” Interscience Publishers,

London, England, p. 47; 1951. New York, N. Y., pp. 173-188; 1957.
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we find the solution of

‘ $+)(Y)
.f(-~)= + J’,~>- ~J7

is given by

(5)

K is of the nature of an integration constant. To apply

this result to (4) it is necessary to change the range of

integration from (.1 , B) to ( — 1, 1). This is easily done

by taking new variables

2(X – A)
XI=. –1

B–J
(7)

with a similar form for Y’ in terms of Y. This is pre-

cisely equivalent to Schwiuger’s transformation

cos (ry/a) = C+S cos O which is the ‘ttrick” by means of

which such equations as (3) have been treated hitherto.

Now K in (6) is

11
.

J
d(<Y)dX

n- –1

which, in the case of (4), reduces to

JG(-Y)dX =
s

F(q)dv = E(v).

For physical reasons this vanishes at both limits; thus

K = O and the additional term in (6) vanishes, ~(Y) is a

constant in the present case, and since

s

1 ~1– p~~
. Tx >

–1 Y–X ‘–

the solution to (4) follows at once. Corresponding solu-

tions are obtained if the right-hand side of (4) is re-

placed by a finite polynomial so that higher-order SOIU-

tious are readily obtained without any ad hoc guessing

at the necessary forms.

The details of these expressions do not concern us

here. The important thing is the realization that (3)

can be reduced to a special case of (5) by means of a

simple change of variable. It is the constant reappear-

ance of the singular integral equation in various forms

that is the key to the extension of the method to a

wider range of configurations.

111, THE UNSYMMETRICAL C.\ P.> CITIVE STRIP

The setting up of the integral equation follows a

similar route to that of the previous case except that the

current on the strip rather thal~ the aperture field is the

L]uknown to be evaluated. (~ similar type of expression

results when the current rather than the aperture field

is used in the diaphragm cases. ) The quasi-static integral

equation can be put in the formz

X+ C=25
s

sin (mm/b) cos (w&b) l(f)o?~, (8)
1

where C is a constant, 1($) is proportional to the un-

known current in the strip, and the range of both x and

& is over the strip.

This equation, on using (2) to effect the :summatiou,

and on putting cos (7rx/b) = x, Cos (7r:/b) = Y,

l($)d& = F( Y)d Y becomes

The change of variable of (7) at once reduces this to the

form (5) and the solution, apart from the rather awk-

ward integration, follows. Integration constants, which

enter in this problem, are determined by setting the

tangential electric field zero at the strip edge.

In the original paper’ (8) was solved through the use

of Schwinger’s transformation, assuming an infinite

Fourier series for 1($). This was eventual [y summed,

leading to the same result as the solution to (9). The de-

tails, together with the final integrations, are given in

the reference.

The point to be noted here is the reappearance of the

singular integral equation in (9), albeit in a. more com-

plicated form than in (4).

IV. FERRITE-LOADED WAV~GUID~

The arrangement consists of a rectangular waveguide

filled with a medium of dielectric constant c for
— ~ < z <O, and transversely magnetized ferrite for

O <z << ~. The reason that this arrangement gives rise

to anything more involved than simple reflected and

transmitted waves is that the ferrite supports a mag-

netic field distribution \vhich differs, on account of the

tensor permeability, from that in the plain guide. Hence

an infinite series of modes is needed, on both sides of the

boundary, to satisfy continuity conditions. The details

are given in Sharpe and Heim’s paper. ~ In Lewin3 the

integral equation derived is of the form

C= MF(Y)+~
s : FY”y’

(lo)
ii-

where C, 31 and K are constant, and F(X) is related to

the field at the junction across the ferrite face.

This is a singular integral equation, but c)f a different

sort from (5). 1n the reference it was solved partly by

guesswork; but it is a particular case of Carleman’s

equation”

J‘ 4(Y)
{1(I)+(X) — i --—–- dy = j(x), (11)

,y—.r

T C. B. Sharpe aud D. S. Heim, “.4 ferrite boundary-value prob-
lem in a rectangular waveguide, ” IRE TRANS. ON MICROWJiV~
l%~o~~ AND TIZCHNIQUIZS,vol. MT~-6, pp. 42-46; January, 1958.
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with the solution

a(x)f(x) ~e7(l)

@(v) =
a’(.r)+k’~’+~az(x) +A27r2

ON MICROWAVE THEORY AND TECHNIQUES July

If dl and dz are the diaphragm inserts, then the values

of a and fi are given by – cos (~dZ/a) and cos (~dl/a).

The transformation (7) gives new limits (1, – 1) with

“[s

1 ~–r(?df(y) dy

1
—+ J- , (12)

-* <a’(y) + x%’ y – x 1 – x

where

1

s

‘ e(t) ~t
T(x) = — — > O(t) = tan–l ~ .

T _lt —$ a(t)

All the integrals involved are principal values.

Eq. (12) contains (5) as the special case a(x) = O. Eq.

(10) is the case a(x)= ill, ~(x)= C: higher-order mode

solutions replace C by a simple polynomial, with no

change in the character of the solution.

Although solutions have, in the past, been obtained,

partially by guesswork, the formulation of the explicit

form (11) and its solution (12), with (5) and (6) as a

special case, is the central feature around which this

paper is written. Some new extensions of existing con-

figurations follow.

V. FERRITE-LOADED W~VEGUIDE WITH

INDUCTIVE DIAPHRAGM

Although the solution of the ferrite-loaded waveguide

of Section IV is quite a formidable task, it is not, in

fact, much more difficult to combine it with an induc-

tive diaphragm. The arrangement is shown in Fig. 2,

the diaphragm being located at the ferrite face.

Fig. 2—Inductive diaphragm in ferrite-loaded guide

If the process of setting up the integral equation is

repeated, with the addition of the metallic diaphragm

at the boundary, it is seen that the only changes occa-

sioned by the alteration is a reduction of the range of

integration, and of the independent variable in the inte-

gral equation, to the new aperture. Hence, the new

equation is

D F(r)
C= MF(y)+j:

J
— d.r, (13)

IT .x—y

\vllere — C = 1 +KX and the normalized reactance, X, is

2~
jx=—

f
yF(y)dy. (14)

-T c

These forms are taken from Lewin. a Moreover, F(y)

must satisfy

s

!9
F(y)dy = O.

a

ax dx’
=.

x—y 1? — y’

Hence the equation transforms unaltered into (10), and

the only eventual change is that (14) for jX becomes

multiplied by the factor f’ = ~(~ —a)z from the con-

tribution of ydy on changing variables. From (33) of

Lewin3 we accordingly get the equation

which, together with – C= 1 +KX gives, eventually,

{
.x=–+1+

lr~ 1f’Lz + m’(f’ – 1) ‘
(15)

where

K+M
L=~log

T K–M

(see (35) of Lewin3). The factorf can be put in the form

sin (m-d/2a) sin (~yo,ia) where d = a — dl — dj is the

aperture opening and yO = ~ (a +dl — dz) is the coordinate

of its center. Eq. (15) reduces to (35) of Lewin3 when

~= 1 (no diaphragm inserts) and gives X = O, as it must,

for f= O (diaphragm completely across the guide).

VI. RECTANGULAR WAV~GUIDE BIJ?CTRCATION

(17-PLANE)

Fig. 3 shows an ~-plane bifurcation of a rectangular

waveguide, in which two guides of width a join at z = O

into a single guide of width 2a.

t !
t

a Yix
\

I
2.0

j l’
I

1
, I

Fig. 3—H-plane bifurcation in rectangular waveguide.

This arrangement in it silnplest form is solvable rigor-

ously by the Wiener-Hopf techniques The justification

of treating it here by the quasi-static integral equation

method is that a number of variants are possible which

yield only to the latter method of attack, Thus, a dif-

ferent dielectric material can be used on either side of

the junction, or an arrangement of diaphragm or strips

can be incorporated there, or both of these can be used

together. These variants are foreign to the Wiener-Hopf

approach, which, nevertheless, has its own field of ap-

plicability, e.g., to bifurcation with unequal guides. It

just so happens that the two approaches overlap in the

simple arrangement of Fig. 3.

8 Marcuvitz, oP. cit.,p. 383,
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Two basic modes can be supported by Fig. 3, sym-

metrical and antkiymrnetrical. Any method of feeding

the two guides from the left can be resolved into a sum

of these two. lVIoreover, since the antisymmetrical mode

is just the natural second-order mode in the broad

guide, there is no change of field at the junction-the

field propagates without reflection.

Hence only the symmetrical mode needs to be con-

sidered, and we confine our attention to the upper part

of the figure, O <y <a.

For z <O we have

Ez = (e-’~” + Re$~”) sin (7ry/a)

Z,HU = (e-fk” – Re’~”) (k’/k) sin (ry/a)

+ j sR~(y,,/k)e’nZ sin (mry/a), (17)

where Zo = 1207r, k’= 27r/A, and V.= v’n%’/a2– k’

~n~/a for large n. The reflection coefficient R and the

mode amplitudes R. have yet to be determined.

For z> O, bearing in mind the symmetrical feeding,

These values can be substituted in (17) and (19). We

replace ~. and 1’2~+1 by their dominant forms and a re-

mairrder term, and write 7ry/a =@ as a conplernentary

variable to 0. The summations are affected via (2), there

being some simplification of terms. The equation ex-

pressing continuity of tangential magnetic field over the

aperture is obtained by equating (17) to (19) for

O<y.:a.

.4 sin @ + B cos (@/2)

-s%’ E’(O) COS(@/2)d0
— - + s, (23)

o 2 [sin (0/2) – sin (@/2)]

Whel”c

sr

.1 = – +jk’u(l – R) – E’ (0) COS9d9,
o

S.B = (1– j2aK’/7r) E’(O) sin (0/2)d0.
o

S is a remainder term giving the effect of the differences

of the higher-order mode attenuation constants from

their quasi-static values.

E. = Tle–~Ic’z cos (my/2a)

. 2aI’2m+1S=g ( )sT

+ ~ T,m+,e-rzm+” cos (27rz+ 1 ry/2a) (18) –1 ,?3’(0) sin (2m + 1 19/2)

1
1 7r(27n +3 o

ZOH, = Tl(K’/k)e-’K” cos (7ry/2a)

– j ~ TZm+l(I’Zm+Jk) e–rz~+”

cos (2m + 1 7ry/2a). (19)

Here K’ = 2ir/A, with A, =A/tii– (k/4a)’ and

= (2m + 1)~/2a for large m.

If E(~y/a) is the as yet unknown field in the aperture

(O< y <a), then the various mode amplitudes can be

expressed in terms of it as follows:

..2

1+R=5
J

E(rr~,/a) sin (7rT/a)dn
a.

2’—
--s

E’ (d) COSOdd (20)
To

on putting xq/a =0 and integrating by parts. (The inte-

grated part vanishes at both limits because of the van-

ishing of the tangential electric field at the metal

. cos (Zm +–i $/2)d0

cm

x(a-f.

- )S
77

— –1 E’(O) sin (rz@) cos (rzO)dO. (24)2n7r o

“~o solve (23) to the quasi-static approximation, neglect

S and change variables by putting sin (0/2)= ~(1 +x),

sin (4/2) = ~(1 +y). A common factor cos (@/2) can be

cancelled in (23) which becones, on putting E’(0)dO

= F(x)dx,

s1 F($)daf
A(l+y)+ll= —— .

_lx —y
(25)

This is of the form (5), giving as solution,

F(.Y) = =2ti& [C+ T*(A + B +- AX)]. (26)

In order to determine C, we note that

boundaries

R. =

T2,.hl =

) Similarly, J –1 Jo

2’
—

s
E’ (~) COS Jztkio (21) since E vanishes at the limits, Finally, therefore,

7rlL o

–4 m

s
E’(O) sin (2m + 1 O/2)d0. (22) F(x) = & [.4x’+ (A + B).V -- ~.~]. (27)

7r(2?r2 + 1) 0
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From (20), together with the two equations defining A

and B, we get three relations from which A and B can

be eliminated. These give the following expression for

the normalized quasi-static impedance at the junction,

l+R k’a 357r + j2K’a
z=— .j— (28)

I–R ~ 137r + j30K’a “

If only one waveguide is fed from the left we have to add

an antisymmetrical mode of unit amplitude to cancel

the wave in the other guide. Hence the incident mode

amplitude is now 2 so that in this case the relative reflec-

tion coefficient is *R with R still given by (28).

Improvements on (28) can be obtained by retaining

early terms in the series (24). Thus the first term to de-

viate appreciably from zero is the term in r~. If we re-

tain it, (25) is augmented to

s1F(x)
A(l+y)+B+c(y2+2y)= — dt, (29)

–lx—y

where

sr 2aI’8
C=A, E’(O) sin (30/2) d@, AZ=— – 1.

0 37

The appropriate solution of (29) is

1
F(x) = — {c*’+ (A + 2C)X’

7r<l — X2

+( A+ B–+C)X– (* A+ C)}. (30)

If this is substituted in (20), and also into the expres-

sions defining A, B and C, and the latter eliminated, an

equation analogous to (28) appears, in which the small

quantity d ~3A$/(64 + 28A,) indicates the order of de-

parture from (28)

l+R Ha 35r + j2K’a – d(l19~ + j18K’a)
.j— – . (31)

1–R m 13~ +j30K’a + d(135~ – j14K’a)

It is a straightforward matter to include different di-

electric media in the solution. Thus, if the guides on the

left have a dielectric constant e, instead of the value

unity so far assumed, (16) and (17) hold except

that k’ becomes (2m/h) ~e— (~/2a)z and y. becomes

4~-#/az — k~c. The analysis is otherwise unaltered, and

the results (28) or (31) are valid with the new values of

the constants. Similarly, the dielectric on the right can

be varied.

Another configuration which is similarly solvable

without much further trouble is the case of the bifur-

cated waveguide with diaphragms at the j unction. I n

order to maintain symmetry the diaphragm in the

lower half is the mirror image of that in the upper.

There is no complication, either, to accept arbitrary

dielectrics in the different guides.

The effect of the diaphragm first appears in (20),

wherein the limits of integration become as in Section

V. The solution leads directly to (25), but with the

altered limits. The change of variable of (7) then re-

stores the range to – 1, 1 and the solution proceeds as

before. We shall not, however, pursue the matter any

further here, as the example given in Section V is typi-

cal of the method of solution obtained.

VI 1. INDUCTIVE DIAPHRAGM .+ND STRIP

As a further example we shall examine an obstacle

in a rectangular waveguide consisting of the combina-

tion of a symmetrical diaphragm with a central strip.

Only the inductive case will be examined, as the capaci-

tive case is obtainable from the known result2 for an

unsymmetrical capacitive strip, by the method of

images.

The arrangement is shown in Fig. 4. It is apparent

that there is a double aperture and a triple metallic ob-

stacle, either method of description being permissible.

In order to reduce the problem to one involving a single

unknown function we note that, because of the sym-

metry, a single aperture distribution function suffices,

I
~.d2 . ..J
y.dl ----

~=~ ---

! +
z

J I
Fig. 4—Inductive diaphragm and strip in rectangular waveguide.

the same for each aperture. Hence we set up the equa-

tions from this point of view. As in the previous section,

we could allow for different dielectric materials on

either side of the discontinuity, but this is an unneces-

sary complication which will be omitted here.

The field to the left of the obstacle can be written

E. = (e-j”% + Relk’z) cos (~y/a)

.
+ ~ Rzn+le~’’+’% cos (2tz + 1 7ry/a) (32)

+1’ h R~.+17zn+le’2”+” cos (2n + 1 7i-y/a), (33)

with

l’z~+l = ~(2~ + l)z7r2/U2 — k2 N (2?z + l)m/a for large ;L.
To the right a similar form is obtained, except that

the first term for Ez is (1 +R) e–]~’z cos (my/a), the mag-

nitude coming from the equality of E. on the two sides

of the boundary. The sign of z in the exponential is re-

versed, and this changes the sign of j in the series for

H,. Only odd-order modes appear in the various sum-

mations on account of the symmetry of the arrange-

ment.
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If the field in the upper aperture is represented by

E(~y/a), then Fourier analysis givesdg
l+R=~ s cos (7y/a) E(7ry/a)dy

a dl

on changing variable and integrating by parts. As pre-

viously, the integrated part vanishes at the limit be-

cause of the physical requirements on E at the edges of

the metal inserts.

Similarly for the higher mode coefficients

41 srdzliz
.R2.+1 =

——
—— E’(9) sin (2H + 1 tl)dO.

~ 27z + 1 .dl/a
The equation resulting from equating the tangential

magnetic fields on the two sides of the bc)undary can

be written

a~z.+l
ak.’R cos #J = – 4j ~

s
E’(O) sin (2n + 1 @

~ 7r(21L+ 1)

sin (2,, + i @)dO, (3.5)

The solution of the integral equation is

F(y) = —-=4=(y+ c’).
Tdl — yg

(39)

In order to determine C we note that, from the vanish-

ing Of E(6) at the limits,

s?rd2/fJ s1 NY)~Y , hence
() = E’(0)d8 = – ,8 —

Villle –1 sin 6’

J
‘ y-l-c dy

-ldl–y’~1–a–py
= o, (W)

The determination of C from this relation is given in

Appendix I.

From (34) and (37) we can now calculate the reflec-

tion at the aperture, and hence the normalized reactance

X representing the discontinuity. In terms of C we have

,(Kx=-:-
Agl+pc”

This relation can be put in various forms. Perhaps the

simplest is

{
x=; –l+—

K

}2 sin’ (rdz/a)li + [cos’ (7rdj/a) – sin’ (7rdl/a) ]K ‘
(41)

9.

where the integration and the range of the variable

@ = ~y~a is over the upper aperture ~dl/a <~, O<~d%/a.

From the symmetry of the problem correct conditions

are maintained in the lower half of the guide. Now

a~z.+l

= 1 — &?,+l,
7r(2?2+ 1)

where &O for large n. l-or the quasi-static solution we

ignore 8 completely (as previously, the first few terms

could be retained to give an improved solution).

On adding the first term of the series to each side,

summing and simplifying, (35) can be written

s~djla E’(0) sin O cos cjdO
Acosl$= — —> (36)

rdlln Cos 2+ — Cos20

where

J

rd2[a

A = jak’R/4 + E’(O) sin OdO.

~dlla

(37)

To solve this equation, put cos 2$ =a+~x, cos 20 =a+~y

and E’(O) sin Odd =~F(y)dy. The factor cos @ cancels

and (36) becomes

s1 F(y)dy
A= — ~ provided that

–ly —z

a + 8 = cos (2Tdl/a) and a — @= cos (2Tdz/a). (38)

where the modulus of the complete elliptic functions K-

and E is given by

k = <1 – sinz (7rdl/a) cosecz (7rd~/a). (42)

This may be compared to Lewin,b (p. 62) to which it

reduces when dz = $a.

VII I. ~TNSYMMETRICAL 11- PL.iN~ ST~P

Fig. 5 shows a waveguide filled with a medium cl, pl

(relative values) from ,s= – ~ to z= 0. At z = O the

guide side y =a is stepped to give a guide of width Za

for z >0. This region is filled with medium e2, pz. A

wave with electric field EC= e–~k’z sin (ry/a) is incident

from the left, with the propagation cousta nt given by

k’ = k(elpl – X’/4a’) 1/2. (43)

The modes which can propagate for z >0 depend on the

values of e~ and pz. In particular, if both media are the

same, at least two mocles can propagate i n the wicler

guide, the dominant mode and the second. They are of

the form, respectively,

e–’~” sin (7ry/2a) and e–j%’ sin (7ry/a),

with

K’ = k(qyz – Az/16a2)’12
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,=0

=, PI Y.o S2 W2

Fig. 5—Change of cross section and of medium in
H-plane of rectangular waveguide.

and

K2 = k(e2p2 – x~/4a~)l/~. (44)

When the media are the same, KZ is the same as k’.

In order to treat the most general case, the loading to

these two modes at z >0 must be considered. If the

second guide is completely matched, there is no reflec-

tion in either mode. In general there will be reflections

of amplitude l?l’ and R2’, with phases dependent on the

positioning of the reflecting loads. If these loads are re-

ferred to the plane z = O, we can define admittances

Y, = (1 – R,’)/(l + l?,’)

and

Yz = (1 – Rz’)/(1 + R,’), (45)

which determine the effects of the reflections. These ad-

mittances are relative to the wave-admittances in the

second guide, the relevant admittance being that of the

respective mode.

The equations for the electric and magnetic fields can

now be set up. For z <0 we have

Ez = (e-~k” + .ReJh’z) sin (~y/a)

+ ~ R~e’”z sin (wry/a)
2

~lkZOHU = k’(e–i~” – Rejh”) sin (~y/a)

where

~n = (n2#/a2 — k?elpJ1/2 ~ }?m/a for large n.

For z>O,

E= =
1 G: “-’K’”

+ R1’ej~’Z) sin (~y/2a)

(46)

(47)

(48)

+ ~ ~ ;J (e-iK22 + RJe’K”) sin (~y/a)

+ ~ T.e-rwz sin (mry/2a) (49)

where

17n = (;z%~/4az – k2c~pJ ll? N rim/2a for large u. (51)

In putting the equations in this form the coefficients

of the first two modes have been written so as to exhibit

fully the effect of the loading in the second guide. Thus,

T, alone is simply the transmission coefficient in the ab-

sence of mismatch in the dominant mode.

At z = O the electric field is taken to be E(ry/a) for

O<y<a, and O for a<y<2a. At y=O, a, it is zero at

the metal walls. Otherwise the form of E is as yet unde-

termined. It will be convenient to take a dummy varia-

ble of integration ~ instead of y, and also to change vari-

ables from m7/a to O and ~y)a to O. Then the various

coefficients can be determined by Fourier analysis in

terms of the as yet unknown E. For example,

a

l+R=~ sE(m-q/a) sin (mq/a) dq.
aO

If we integrate by parts, taking the integrated part zero

because of the vanishing of E at the limits, and change

from v to 9 as explained above, we get

.

l+R=~
s

E’(8) COSOdO. (52)
To

Similarly

R.=?
s

.

E’(%) COSnodo (53)
7rJb u

and

Tn=~ s.E’(8) COS ~fiOdO. (54)
?rn 0

Inserting these values in the equations for the magnetic

field, putting z = O, and equating the two fields over the

aperture, gives

~mpzk’(1 — R) sin @

.

+ j 5 /J2(71J?t)sE’(6) cos MdO. sin ?z~
o

f

T

= plK’ Y1 sin ~~ E’(o) COS~~d~
o

s.+~NIKz Yz sin ~ E’(e) Cos ode

– j S ~l(rn/n)
(O”E(~)cos+~~dO.sin+n@. (55)

3 3 Jo
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In order to obtain the quasi-static equation we now

replace ~. by n~/a and 17. by n~/2a. If desired, a finite

number of early terms could be retained in their exact

form: this has, in fact, been done with the second-

order mode, which happens, in this problem, to be a

propagating mode. The series are then extended down

to n = 1 by adding and subtracting terms, and summed

using the formula

~ cos (nu) sin (m) = * sin u~(cos u - cos v).
1

We introduce two constants as follows:

srA=(j4/7r’)(jr+2K”’a YJ E’(@ COS ~Od6 (56)
o

B = (-–j8/7r) [k’a(l – R)M/Ml

– ~ ( 1 + R) (jr + K2a Y2 + jmpZ/Kl) ]. (57)

“rhen (55) becomes, after expressing the trigonometrical

terms in terms of their half angles,

. [Cos ;0 + Cos +4(1 + 2#2/AJ]de

= A sin ~~ + B sin ~~ cos ?# O< @<T. (58)

Now E(6), qua function of O can be considered to be

an odd function. It goes to zero linearly at 0 = O. In

fact, the alternative problem of a symmetrical wave-

guide step, fed by the second-order mode, and obvi-

ously having antisymrnetrical features, is converted

into the present one by placing a metal wall along the

center where the electric field is null. Thus (58), which

is obtained only for O <~ <r, is in fact still valid for

—z <~ <O. This can also be seen by putting —~ for

@ and –0 for 0, when the equation is seen to transform

into itself, on using the symmetry properties of E(O).

In order to see this, and at the same time simplify the

equation, we note that, if in the second term only, on

the left, we write –0 for 0, it takes the form of the first

term, but with limits O and –m. Hence, the left hand

side becomes

1’

J

Cos @ + Cos +0(1 + 2LL2/kl) do
— E’(o) — 7
7r —r sin ~e — sin+$

which obviously has the symmetry properties stated.

Finally we change variable again, putting x== sin +0

and y = sin *I$. (This use of x and y in this section will not

‘be confused with their earlier use as coordinates.) In-

stead of E’(0) we introduce a function F(x) such that

E’(6)d0 = F(x)dx.

The quantity 1 + 2pJp1 which occurs repeatedly from

here on will be denoted by az

a2 = 1 + 2PZ/P1( = 3 for equal media), (59)

Eq. (58) becomes

1
— s1‘(x)[(1 – X2)112 + az(l – y’)1/2jd~
T .lz —y

= Ay + By(l – yz)llz –1 <y <l, (60)

with the additional requirement

J

1

f

r

F(x)d2 = E’(o)do = E(r) – E(o) = o. (61)
o 0

Eq. (60) is considerably more involved than the

simple singular integral equation which it at first sight

appears to be. If the term in a? were absent it would be

a straightforward equation with (1 —x2)11i!F(.v) as un-

known. Similarly, if the term in (1 –Xz)l)z were absent it

would become, on dividing by (1 —y2)l/2, a simple equa-

tion in F(x). The general equation, in which two arbi-

trary functions appear, would seem to be not solvable

by known techniques. However, the particular case

(60), and quite a range of other equations, can be

solved by a technique outlined in Appendix II. We will

here quote only the final results. The solution to (60)

which also satisfies (61) is

F(x) =
;;: J-YP(:%- 1)+X-6(”+- 1)1

B cosec q?

[(

‘@z

—

)

X19 ~+33_

2(1 + a’) l–x

where

and

x = (1 – z)/(1+ “c)

6 = 1 tan-l (a) ( = 1/3 for equal media). (63)
T

A relation between the constants A and B can now

be obtained by insertion into (56),

4B ~(1 – p)(l – 26)(1 – j2K’a YJ7r)
A=x — ~ (64)

1 – (1 – 2@)2(l – j2K’al’l/7r)
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Finally, if these results are inserted into (52) and (57), the obstacle is capacitive a change in permeability of

an equation results for (1 —R)/(1 +R), the input admit- the media can be met. But the analysis may sometimes

tance relative to the wave admittance of the first wave- be more involved, apparently, the other way round.

guide The method can be used for any finite number of feed-

(65)

In the case P9>>,uI this gives ~~~ and Yi.~0, an open

circuit, as is to be expected.

Eq. (62) can be integrated to give the electric

field across the aperture, since

So
E(0) = sE’(o)do=‘F(I)A.

o u

B cosec T(I X1–5 – X1+6

[

X1–B _ XB
——

(1+X)’ ‘o 1(66)
l+a’ 1+X “

Herein we must take x = sin ~0 giving X = tan’ (~–O/4).

Now, for equal media we have f?= $, whilst for P2>>M,

@= ~. D is always the smallest of the various exponents

of X. Hence, near the sharp corner, where O-m, the

electric field is seen to vary as X~ or (m — (?)2$. This can

now be expressed in terms of the coordinate y across the

aperture,

E~(a–y)2~ as y~a. (67)

Expressing the exponent in terms of a through (63),

and hence in terms of Ml and P2, we get

2@ = ~ tan–l (1 + 2~2/I.J1)l/2. (68)
r

For equal media this exponent is ~. In prior calcula-

tions of this sort of problem it has been usual to con-

formably map the boundary by the Schwartz-Christof-

fel transformation, and the exponent has arisen from

a consideration of the geometry of the boundary

surface at the re-entrant corner. Eq. (68) on the

other hand, exhibits the exponent in terms of electrical

parameters with a value which varies according to the

changes in the media. This result appears to be new.

In particular, with p~>>~l, the first guide is open-cir-

cuited, and (68) gives 2P= 1, corresponding to the nor-

mal sinusoidal waveguide mode going to zero linearly

at the guide wall.

IX. RANGE OF APPLICABILITY

The present method is applicable, so far as is known,

only to rectangular waveguides, including infinite

parallel plate arrangements. When the obstacle is in-

ductive a change of dielectric constant on either side of

the boundary can be accommodated. Similarly, when

ing modes, and can be used to calculate the electric

fields, the reflection coefficient, transmission coeffi-

cient, or the mode conversion. The quasi-static solu-

tion can be augmented by the retention of a finite num-

ber of higher-order modes, the solution of the relevant

integral equation being not appreciably more compli-

cated thereby. However, each new mode introduces an

additional constant into the solution, whose elimina-

tion is complicated if too many modes are retained.

The method has not yet been successfully applied in

those cases in which guides of different dimensions are

involved, except where integrally related, nor in cases

in which an axial extension of an obstacle needs to be

taken into account. It is believed that at least the first

limitation may be eventually removed, but success will

depend on new methods of dealing with the special

types of singular integral equations that arise.

APPENDIX I

In (40) Ptlt y = – COS 20.

s

lrj2 C–l+2sin20
o= do.

o ~1–a+fl-2@sin’O

Nlultiply through by v’1 – a+~ and put k2

=2/3/( 1-a+p).

s‘/2(C–1 + 2/k’) – (1 – k2 sin’ @2/k’ ~0
o=

o <1 – k2 sin2 O

where

E–K
C=l+ — mod {26/(1 – a + 3.

~Kk2

On simplifying the various terms this leads to (41) and

(42) of the text.

ATPENDIX II

Following TricomiO we introduce the transform op-

erator TU operating on a function @(z)

(69)

The principal value of the integral is to be understood.

Where no confusion of the variables is likely to exist we

shall write this simply T(o). Eq. (60) is a particular case

of the equation

aT(F) + T(bF) = f, (70)
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with

a = a~(l — y2)l/2, b = (1 – .#)’/’,

f = ~Y + By(l – y’)’l’ (71)

and subject to O =fl-l F(x)dx, an alternative form of

(61) for F(x) even. The similar problem, but with the

addition of inductive diaphragms, would give, after

renormalization, a like equation, but with the radicals

replaced by the form [1 — (c+dy)~]llz throughout. In

the absence of a general solution of (70), this latter

problem so far remains unsolved. Eq. (70) can, how-

ever, be solved in a large number of special cases, in-

cluding a = b, ab = C(l —xz) and many others. But we

shall here concentrate only on the analysis which leads

to the solution of the problem in hand.

Tricomi gives a number of useful results. A convolu-

tion theorem is

T[@]T(@ + o!T(o,)] = T(OJ T(o,) – odv. (72)

The solution of T(d) =4 is

@ = (1 - y’)-”{ -T.[(1 - .P)’/’#(x)] + c} , (73)

where C is a constant.

The solution of Carleman’s equation

Lo@ – I“z[dy)l = id~)

is

4(Y) =

a(y)g(y)

1 + a’(y)

{[
+ .4 (y) TU

e-’(’)g(x)

[1 + a’(x)]” 1++:},

and

A (x) = e’t’) [1 + uz(x)]-’/’

(74)

Using these formulas we return to (70) and ask under

what circumstances, if at all, it can be reduced to an

example of Carleman’s equation, whose solution we

know.

Let us start with the equation

CF + eT(dF) = h., (75)

where c, d, e and h are all functional at our disposal.

Operating with T, and using (72) to express T[eT(dF) ]

i n other terms, we get

T(h) = 7’(cF) – edF + T(e) T(dF) – T[dFT(e)]. (76)

[et LIS choose l’(e) = AZ, a constant, so that, from (73)

e=~(~..— C)(I – %’)–1/’, (77)

:331

with C as yet arbitrary.

Then (76) simplifies to

T(h) = 2“(cF) – edF. (78)

From (75) and (78), on eliminating the untrans-

formed i-erms in F,

T(h) + edk/c = T(cF) + (e’d/c) T(dF). (79)

Choose C=X– C, d =(1 –.v2)1fa, so that cd/c =K. N“ow

1“-slx–y+y–c
~~(.~)~~

ii- —1 x—y

s

1

= (y – C) T(F) since F(x)d.r == O by (61).
–1

Putting K= I/a, and substituting these results in (79)
gives finally

a2(l — y~)’12T(F) + T[(l — X2)l/~F]

—— “(;: :1’2[T(h) -+ ;,/a]. (80)

If now we choose h such that

T(h) + h/a = a-~(y – C)(I – y’)-~ j~(y), (81)

then (80) becomes equivalent to (70) and (71).

From (78) with k given by (81)

T[(x – C)F] – (y – C) F/a

= ;[T(k) – h,/a] + ~a–~(y – C)(I – ya)–1/2~(y).

If we. put (y – C) F(y) = ~H(y) +~k(y), then II is given

by

T(H) – ~/a = a-’(y – C)(l – y’)-] l~(y), (82)

an equation differing from (81) for h only by the sign of

a. These two equations, both of Carleman’s type, can

now be solved for L and H, and F(y) is given in terms of

them by

H(y) + h(y)

F(y) =
2(y – c) “

(83)

In writing down the solution it becomes apparent that

the integration diverges at x = 1 unless the so far arbi-

trary constant C is g~ven the value

determines the constant, and the

form

1

{f

1
F(y) = yl–d

27r(l – y)(l + cl?) —1

unity. This feature

solution takes the

Xp- 1/:!

—-j(t)dx
y–x

s

L xl/2-p

+. y-d 1—-J(.r)dx , (84)
–,y —x

where Y= (1 — y)/(1 +y) and X is a similar function of

x. The constant P is related to a by D = (,1/m) tan-l a.
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In view of the requirement of the integrability of F(y)

at y = 1 no complementary functions along the lines

indicated in (74) appear in this problem.

The integrations in (84) are straightforward

is taken as a new variable. If we write

scc
yn = X,(1 + x)-n~jy,

o

then yl = —T cosec rp, and the recurrence

Y. ‘YA(fi – 2 –P)/(n – 1) is readily obtained.

tegral

when X

relation

The in-

J
WI XP

— dX = – Y% cot @
o x–v

on taking ~ =X/1’ as new variable. These results suffice

to integrate (84) when j(x) is of the form specified in

(71) and p is suitably chosen.

It is readily verified that fl_lF(x)dz is zero, confirming

the absence of any other complementary function.

The integrations involved in the determination of A
and 1 +R involve the integrals

x. =
s

‘X.(1 – jyp(l + X-”wix
o

which can be shown to satisfy

(?’2+ 1)% + 2pxn_, – (W – 1)$%, = o

XO and xl are readily expressed in terms of yz and yj of

the previous paragraph, whence the value of x. follows.

Finally, (62) of the text for F(x) is found on collection

of terms, Its integration to give E(O) is elementary.

The solution to (70) with completely arbitrary func-

tions a(x) and b(x) has not yet been determined by this

method, and it is possible that in this general case more

powerful mathematical tools are required. In particular,

it has not been possible to find the solution when the

radical takes the more complicated form appropriate to

the presence of a diaphragm, except in the very special

case a=l(,uz=O).

A Dielectric Surface~Wave Structure: the V+Line*

P. DIAMENT~, S. P. Schlesinger, MJ3MBJ31Z,1=, AND A. VIGANTS~

Summary—Properties of the V-1ine, a wedge-shaped surface-

wave structure comprising a cylindrical dielectric binding medkm of

sectorial cross section supported by two conducting plates, are con-

sidered in terms of its higher-order hybrid modes of propagation.

Practical modhications of the ideal structure are emphasized.

Design curves and equations are presented to determine various

propagation parameters and their significance is discussed. Experi-

mental verification of the theory is described.

INTRODUCTION

A

F? ANALYSIS of surface-wave propagation on di-

electric cylinders of sectorial cross section

bounded by conducting plates, as in Fig. 1, leads

to the usual set of Io\v-order transverse modes and

higher-order hybrid modes. In cases of practical in-

terest, however, the prototype structure, here desig-

nated “V-Iine, ” will be modified in that the plates will

be insulated at the apex, whereupon the transverse

modes are eliminated and consideration of high-order

hybrid modes is required. This modification of the V-

Iine enhances its versatility; in particular, it facilitates

the excitation of the modes and permits the application

* Received by the PGilITT, August 16, 1960; revised nmuu-
script received, April 26, 1961. This work is based on studies under-
taken pursuant to Contract AF 19(604 J3879 with the AF Res. Div.

T Dept. of Elec. Engrg., Columbia University, New York, N. Y.

of biasing potentials between the conducting plates.

With the use of ferroelectric cylinders, such bias fields

may provide convenient electronic control of propaga-

tion characteristics.

Although the angle included by the plates is, in

principle, unrestricted, for simplicity it will be taken to

be an aliquot portion of a semicircle, i.e., r/n radians,

where the integer n designates the order of the mode.

For such angles, the modes that may be supported by

the V-line may propagate on full circular dielectric

cylinders as well. The latter waveguide has undergone

extensive analysis with respect to its dominant modes.l–c
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