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Periodic and Guiding Structures at

Microwave Frequencies*
A. F. HARVEY~

Summary—The paper reviews the properties of periodic and
guiding structures which now play an important part in the operation
of components, antennas, electron tubes and low-noise amplifiers.
An account is first given of dispersive propagation in periodic-loaded
lines, showing how the frequency characteristic breaks into pass and
stop bands. The formation of forward- and backward-space har-

monics and the effect of systematic modidcation of loading are ex-

amined. A description is then given of the various types of surface-

wave structures including dielectric rods, dielectric-clad metals, and

corrugated surfaces, as well as surface wave instruments and cir-
cuits. Practical slow-wave structures such as ladder lines, coupled
cavities and helices are finally treated. The survey concludes with a
bibliography.

LIST OF PRINCIPAL SYMBOLS

(RATIONALIZED MKS UNITS ARE USED

UNLESS OTHERWISE INDICATED)

b = Linear dimension, meters.

c = Speed of light in vacuo = 2.997929 X 108

meters per second.

C= Capacitance, farads.

d = Linear dimension, meters.

E = Electric field, volts per meter.

H= Magnetic field intensity, ampere turns per

meter ( = 4m x 10–3 oersted).

~.(l) = Hankel function of the first kind and nth order.

H.@J = Hankel function of the second kind and nth

order.

j = Operator, 90° rotational= ~– 1.

J.= Bessel function of the first kind and nth order.

1= Length, meters.

1= Suffix for long.

L = Inductance, henry,

m = Integer.

n = Integer.

N = Number of resonators or elements.

o = Pitch of periodic structure, meters.

P = Power, watts,

Qti = Unloaded Q factor.

r = Radial coordinate or SUfiX,

?’h = Radius of helix, meters.

rl = Radius of rod, meters.
R,= Surface resistance, ohms.

s = Suffix for short.

t= Time, seconds.

u = Radial propagation coefficient= a +jb.

* Manuscript received by the PGMTT, January 2, 1959; revised
manuscript received July 27, 1959.
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v~= Group velocity of wave= du/d@ meters per

second.

VP= Phase velocity of wave= w/b meters per

second.

w = Linear dimension, meters.

IV, = Total average stored energy per unit length,

joules per meter.
~ = Linear coordinate, meters or SUffIXo

X,= Surface reactance, ohms.

y = Linear coordinate, meters or suffix.

Y.= Bessel function of the second kind and nth

order.

YO= Characteristic admittance of transmission line,

mhos.

Y1 =Admittance of stub, mhos.

z = Axial linear coordinate, meters or suffix.

2.= Coupling impedance of circuit, ohms.

20= Characteristic impedance of transmission line,

ohms.

2.= Surface impedance = R, +jX. ohms.

Z,h = Shunt impedance of circuit, ohms per meter.

Z.= Wave impedance of free space= 377 ohms.

21= Impedance of loading element, ohms.

a = Attenuation coefficient, nepers per meter.

~ = Phase-change coefficient= 27r/h,, radians per

meter.

~~ = Value of@ for nth space harmonic.
~W= Value of@ in free space.

y = Propagation coefficient= a+j~.

‘Y* = Value of Y for nth space harmonic.
8 = Dielectric loss angle.

8,= Skin depth in a conductor= 2/(wppoo-) 1/2

meters.

6 = Dielectric constant.

60= Electric space constant, (1/36r) 10-9 farads

per meter.

6’= Angular coordinate or suffix.

h = Free-space wavelength, meters.

~,= Cutoff wavelength of waveguide, meters.

h~ = Guide wavelength, meters.

~ = Relative permeability.

y.= Magnetic space constant, 4~ X 10-7 henry per

meter.

p = Amplitude reflection coefficient.
a = Conductivity, mhos per meter.

q5= Angular coordinate or suftix.

+,= Pitch angle of helix.

a = Angular frequency, radians per second.
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WAVES IN PERIODICALLY-LOADED LINES

Dispersion

The propagation characteristics of a transmission line

are modified [39 ] when the line is loaded with reactance

connected in series or parallel, and spaced at regular

intervals. The analysis of such periodic structures,

familiar [30 ] in many branches of science, has been

extended [50], [167 ], [233] to microwave transmission

lines. An equivalent circuit treatment reveals a quali-

tative description of the various phenomena, providing a

basis for exact analysis using Maxwell’s theory.

Propagation alonga transmission line, loaded as shown

in Fig. 1, may be analyzed by Floquet’s theorem [30],

[233] which states that for a given mode of oscillation

and frequency the wave function is multiplied by a

constant complex factor exp ( —7P) on moving along the

structure by one section or period. For propagation

along the z-axis, the wave function can be written in the

general form exp – (~ + 27rnj/P)z. It can be shown that

in a structure without energy dissipation y must be real

or imaginary. If real, the exponential for each value of

n decrease with increasing z and attenuated waves

result. If, on the other hand, y is imaginary, putting

1% = PO+ 27rn/P, (1)

the wave function becomes exp j(wt —~mz), on inclusion

of the time dependent term. This represents a progres-

sive wave with angular frequency u and wavelength
~~/~~, traveling along the z-axis with phase velocity

Vp. =u/p..

The loaded line may be considered as a series of sec-

tions, each consisting of a portion of line of characteristic

impedance ZO and a lumped impedance Z1. The phase

change across a section A C consists of the sum of the

phase changes along a portion of line AB and across the

lumped impedance B C. The equations of the frequeuc y

characteristics of this infinite loaded line may be deter-

mined by the usual analysis [271 ] of ladder lines. The

phase change along a length of transmission line is 27rP/h,

while the total phase change per section is @,,P or

27rp/& when n is considered zero. It can then be shown

[167 ] that

27rp 2Tp z, 2Tp
cos T=cos T+j — sin ——

2Z0
(2)

9 A

is the equation of the frequency characteristic. For a

line loaded with series inductances L,

Zl = jwL (3)

and the resulting (2) with d.&Z~ is plotted in Fig. 2. It

will be seen that as u is increased from zero to about

two- thirds of me/P the value of B increases from zero to

T/@. At this higher frequency, reflections set up at the
inductors add in phase, resulting in a standing wave on

the line with current antinodes at the inductors. For

L%EPIW5 !--J’’m.”d”d
Fig. l—Line loaded with lumped impedance.
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frequencies a stop band occurs, the wave down

the line being attenuated by successive reflections at the

inductors while the total phase change remains constant

at the value r. For smaller or larger values of L, the

curves have similar shapes but follow the VP= c line to

higher or lower frequencies, respectively. The curves

always have zero slope at cutoff and propagation is

possible at zero frequency. A second pass band begins.

when the phase change across each portion of the line

(not including the inductor) becomes ~; i.e., when w

becomes Tc/P. At this frequency there is no phase

change across the inductor, a standing wave being pro-

duced with nodes at the inductor. With further increase

in frequency, the phase constant increases until the

phase change across each section of the line becomes

27r when a further stop band occurs. The widths of suc-

cessive stop bands increase with frequency since they

are dependent on the reactance COLof the inductor, It

will be seen that the phase velocity given by ti/fl is less

than c, except in the special case of standing waves with

current nodes at the inductors when, as may be ex-

pected, it is equal to c.

For a line loaded with series capacitances C,

Z1 = l/jut (4)

and the resulting (2) with (1/co C) =3Z0 is plotted in

Fig. 3. Once again a series of stop and pass bands is

obtained but in this case the widths of the stop bands
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decrease with increasing frequency. The phase change ZI = jZOI tan (27d/A). (5)

across the capacitor is such that the phase velocity is
The equation of the dispersion curves then becomes

greater than c, except when a standing wave with nodes

at the capacitors occurs when it is equal to c. It should 2n-p 21rp 201 2Tl 2Tp

be observed that the transmission line now has a cut-
cos —=cos ——— tan —sin—.

k, A 220 A A
(6)

off frequency below which no propagation occurs. The

general shape of the curves is the same for other values The analysis is simplified without affecting the qualita-

of C, tending to the VP= c line for C large and to horizon- tive features if 201= 2Z0, so that (6) becomes

tal lines representing no propagation for C small. These

dispersion curves for series capacitance are identical
27rp

[

27r(p + 1)1/ 2rl
Cos — . Cos Cos — (7)

with those for shunt inductance loading while, by the A, h h

principle of duality, the curves for shunt capacitance

are identical with those already shown for series in-
which is plotted in Fig. 4 for l~fl~l. 2. At low frequen-

ductance.
ties the loading is inductive, but as u increases a cutoff

Microwave transmission lines are often loaded with
occurs when Ag = 2P, a standing wave being produced

resonant circuits such as, for example, series stubs. If J
with antinodes at the stubs. The frequency at which this

is the length and 201 is the characteristic impedance of
cutoff occurs is less than the lowest or first resonant fre-

such a stub, the loading impedance is
quency of the loading reactor. This first resonance oc-
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Fig. 3—Frequency characteristic for capacitively loaded line.

curs when the effective length of the stub is *X and the

attenuation in the guide is then infinite. From the cutoff

frequency to the frequency at which the stub length is

$A, the phase change along one section of the guide re-

mains at the value ~.

.4t the resonant frequency, the loading on the guide

changes from inductive to capacitive and the phase dif-

ference across a section changes by r. The phase change

remains constant at zero until the next pass band is

reached. At the beginning of the second pass band, the

loading is capacitive with a corresponding frequency

characteristic. When the effective length of the stub

becomes ~h, it is again resonant with a node of electric

field at the mouth of the resonator and ~, =). For a

higher frequency, the loading is inductive and a cutoff

occurs at a frequency approaching the value for which

the resonator length is $A. The same cycle of events is

repeated at all resonant lengths (wA + *A) /2 where m is

a positive integer. At frequencies for which the effective

length of the stub is ml/2, the loading changes from

capacitive to inductive and h. =A.
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Fig. 4-Frequency characteristic for a parallel-plate line loaded with stubs.
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At frequencies such that u = mTc/~, further cutoff

values occur. The stop band associated with this type of

cutoff is the same as that obtained with inductive or

capacitive loading. No resonance occurs in the cavities

and the phase change across a section of the guide re-

mains constant throughout the stop band. On both sides

of the stop band, the pass bands are either both induc-

tive or both capacitive, In the former case, u = wmc/fi is

a low-frequency cutoff for the pass band, and in the lat-

ter, it is a high-frequency cutoff. For example, if

l/p = 0.2, the first stub resonance occurs at w = 2.5rc/fi;

before this frequency is reached, the dispersion curve

shows inductive stop bands at both n-c/@ and 2Tc/~.

The phase velocity VP= ti/$1 for any point P on the

dispersion curve is given by the slope of the line joining

the point to the origin. The group velocity v~= dm/d~ is

given by the slope of the curve at the particular point.

Provided that the attenuation coefficient is not too

great, v, is also the energy velocity [30] defined as the

rate of flow of energy through a cross section of the

guide to the energy stored per unit length, the ratio

being averaged over one complete section. If Q,, relates

to the resonance of the loaded line which is short-cir-

cuited at both ends, the attenuation in the pass bands

is given in nepers per meter by [233]

a = w/ (vgQJ ! (8)

The dispersion or rate of variation of phase velocity

with frequency may determine the useable bandwidth of

a periodic structure in a practical device; it is given by

dvP/d~ = (Vfl/w) (1 - Vp/V,) . (9)

Information about the stop bands is obtained [167]

by substituting cos ((?–ja)fl for 27rP/A, in (6), The

attenuation in nepers per section ap is then given by

27rp Zol 27rl
2=* (lo)cos(~—ja)f l=cos~—-tan~sin~.

2ZII

The attenuation is zero near the edges and becomes

infinite at the center of the resonance stop bands, but

remains finite in the inductive and capacitive stop

bands. The treatment given for the frequency charac-

teristics has assumed that there is a nearly loss-free sys-

tem and, moreover, the simple relation of (8) predicts

infinite attenuation as the edges of the pass band are

approached. These difficulties have been overcome by

Butcher [36 ] who, in taking into account the effect of

both conductor and dielectric losses, introduced a

complex Q factor which can be used in the pass and stop

bands.

Space Harmonics

The frequency characteristics given so far have been

for the case when n= O in (1); that is, only one value of

phase velocity has been given explicitly for a particular

frequency. The instantaneous potential waveform along

the guide is, however, not sinusoidal, but changes dis-

continuously across the loading impedances and can be

described in terms of Fourier analysis as a sum of a

series of space harmonics. The amplitudes of these har-

monics depend on the form of the potential field which

is controlled by the particular structure of the periodic

guide. For example, the potential of a traveling wave

on a parallel plate line with stubs of aperture bl, assum-

ing that the electric field strength is constant across the

mouth, is given by [167]

If (30is given the value 7r/4P, (1) gives

The instantaneous waveforms of the harmonics corre-

sponding to n= — 1, 0, +1 are shown in Fig. 5(a).

The frequency characteristic of a periodic stub loaded

structure which includes all space harmonics from

n= –2 to n= +3 is shown by the full lines of Fig. 5(b).

It will be seen that the phase velocities of the various

harmonics are different and that those for n = O, +1,

+2, and +3 are positive, while those for <v= – 1 and – 2

are negative. At the cutoff frequencies, for every space

harmonic with positive phase velocity there is one with

an equal and opposite phase velocity. Further investi-

gation shows that the amplitudes of these pairs are also

equal and therefore at a cutoff frequency, the guide can

support only standing waves. If VP is the phase velocity

at a point A, geometrical considerations show that the

phase velocity at corresponding points such as B, C, 1),

and E is given by vP15/(nhQ+P).

The group velocities of all the space harmonics are

seen to be equal for any given frequency and to have the

same direction as that of the energy. For n negative, the

phase velocity is always opposite in direction to the

group velocity. Such space harmonics are termed reverse

or backward waves and, in particular, it is possible to

have periodic structures in which the f u ndamenta~ is it-

self a reverse wave. The complete characteristic contains

a range of upper branches corresponding to resonances

of the stubs. Two conventions are in use for the numberi-

ng of these branches. In one, the fundamental k taken

to be that space harmonic with the highest phase ve-

locity, while in the second, which is adopted here, it is

that harmonic which normally has the largest ampli-

tude. In the latter case, with small loading, the char-

acteristic tends to that of the transmission line.

If electromagnetic energy is propagated in both direc-”

tions, then as shown by the dotted lines of Fig. 5(b),’

additional curves which represent waves with negative
group velocity appear to complete the frequency char-

acteristic. If the forward and backward energies are

equal, standing waves are produced not only at the cut-

off values but at all frequencies. This analysis may

readily be extended from parallel plate lines to wave-

guides. The characteristic impedance is now given for

any one mode of propagation by the ra,tio of the trans-
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Fig. 5—Forward and backward space harmonics. (a) Stub structure and wave forms of the n = – 1, 01 and +1 space harmonics.
(b) Frequency characteristics of the n = –2 to n= +3 inclusive space harmomcs.

verse electric to transverse magnetic field. The fre-

quency characteristics will be similar to those given

above except at low frequencies where the guide ex-

hibits a cutoff.

It may be shown [167] that the longitudinal and

transverse components of the electric field in the main

guide oscillate in quadrature. For capacitive loading

where VP> c, the amplitudes vary in the transverse direc-

tion according to sine and cosine laws. For inductive

loading where VP< c, the transverse propagation con-

stant is real and the amplitudes decay according to

hyperbolic sine and cosine laws; these become expo-

nential some distance from the loaded surface.

Multiply-Periodic Load%g

Other properties of periodic structures emerge when

the loading is systematically uneven [24], [256]. For

example, in the structure shown in the inset of Fig. 6,
which consists of series stubs of alternate length, it will

be evident that the number of degrees of freedom of the

system are now doubled and therefore there will be

twice-the number of branches in the frequency charac-

teristic. Analysis of the equivalent circuit of this

double-stub structure gives [167 ] the equation of the

frequency characteristic as

Cos (47rp/xJ = Cos (47rp/x)

– (ZCU/2ZJ sin (4@/}) [tan (27rlJX) + tan (2m?,/X) ]

+ (Zo12/2Z0’) sin’ (27rp/k) tan (27rlJA) tan (27rl@), (13)

where (47r#/&J is the phase change across one compIete

section of the line (including a long and a short stub).

The frequen~i~s at cutoff for @= O and @= x/P are

given by

Cos (47rp/Ag) = 1. (14)

For ZOI = 22., (13) then gives

mm
~=— (15)

P’

mrc
~=—

{ }
1+;+! .

P P
(16)

The values of u in (15) are the capacitive or inductive

cutoff frequencies, being the beginning or end of a stop

band. The values of a in (16) which depend upon 11and

1, give the cutoff frequencies when adjacent resonators

are oscillating in antiphase.

The frequencies at cutoff for ~= rr/2P are given by

Cos (4rp/kg) = – 1, (17)

and, for 2.1 = 22., (13) gives

7rc2m+l
~=—

2 p+lt’
(18)

7rc2m i-1
~.———

2 p+ l,”
(19)

These values of w correspond to the occurrence of nodes

at the long and short resonators, respectively. If the

stubs are all of length 1, the frequency for ~ =7r/2P is

given from (7) by

7rc2m+l
~.—

2 p+l”
(20)

Comparison of (20) with (18) and (19) shows that cutoff

values of ~ at ~ = m/2p for the double-stub structure
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Fig, 6—Inductive double-stub structure. (a) Frequency characteristic. (b) Relative phases of the stubs.

occur at all points where the ordinate 7r/2P cuts the

curves of the two uniformly-loaded lines.

Thus the frequency characteristic of the double-stub

periodic structure will be similar to that of the simple

structure until the phase constant approaches the

values at which the cutoffs occur. The characteristics

will depart at these points since standing waves can

occur with either nodes or antinodes at the modified

resonators. These standing waves will have the same

wavelength but different frequencies and will be dis-

placed with respect to each other by ~h,.

The useful properties of this structure occur when the

ratio 11/1, is not too great, for instance, between 1 and 2.

The frequency characteristic may then belong to two

classes. In the first class shown in Fig. 6(a), the reso-

nances of the stubs occur at a higher frequency than the

two standing waves at B and C when @= n-/2P. There-

f~re, in passing from one branch to the other, the loading

remains inductive and there is no change in the phase

coefficient at d = 7r/2P. As ZO1 is reduced from the value

220, the initial portion of the characteristic for all stub

lengths tends to follow the v.= c line more closely and

vice versa if ZO1 is increased; the cutoff frequencies are

also modified. From analogy with the characteristics of

crystal lattices containing diatomic molecules, the lower

curve is sometimes termed the acoustical branch and, ,as

shown in Fig. 6(b), the phase of the oscillations in the

resonators differs by less than ~r and tends to zero when

6 approaches zero. The upper curve is termed the opti-
cal branch and the phase of the neighboring resonators

differs by more than ~~ and approaches r as 6 ap-

proaches x/@.

In the second class illustrated by Fig. 7, a resonance

of the larger stub occurs between the two standing

waves at D = T/2P when 11= 4A and results in a change

from inductive to capacitive loading. The loading re-

mains capacitive until a frequency is reached where

& =k; i.e., the phase velocity is equal to the free-space
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Fig. 7—Resonant double-stub structure.

velocity. At this frequency the capacitance of the small
resonator and inductance of the larger :resonator may

be regarded approximately as a series resonant circuit.

At a still higher frequency the loading is again induct-

ive. For periodic structures with more than two lengths

of stubs, the number of branches in the frequency char-

acteristic will equal the number of different lengtlhs of

resonator; i.e., the number of frequencies corresponding

to a given phase constant is equal to the number of

degrees of freedom associated with each section of the

line. For example, in a structure in which there are

three stubs per section and every third is modified, one

of the many possible characteristics takes the form

shown in Fig. 8. It has been shown [167] that under

certain conditions and over a limited frequency range,

the dispersion is small since the phase velocity is nearly

constant.
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DIELECTRIC-CLAD METAL STRUCTURES

Plane Waves Over Flat Swfaces

In conventional transmission systems, at microwave

frequencies the electromagnetic energy is effectively

confined to a closed region of space by means of con-

ducting walls. Under certain conditions other types of

transmission may exist in which the energy is not

rigidly confined but rather is bound to a surface or struc-

ture. Such a guiding structure can support [32] three

classes of waves: first, a continuous spectrum of propa-

gating waves and second, a continuous spectrum of

evanescent waves which are exponentially attenuated

in the direction of propagation. The third class repre-

sents one or more surface waves which, by careful

launching, can be made to predominate.

These surface waves [20], [190], [292], [293] are

forms of electromagnetic energy which propagate with-

(

0 ~ Zrr

3p ~
F

Fig. 8—Triple-stub multiply-periodic structure.
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out radiation along an interface between two media

with different physical properties. The electromagnetic

field extends to infinity in the transverse direction but

the energy density decreases with distance so that, in

practice, most of the energy of the wave is constrained

to flow in the immediate neighborhood of the structure.

The only flow of energy away from the interface is that

required to supply the losses in the media concerned.

The properties of these waves are governed by the sur-

face impedance Z. defined as the ratio of the tangential

components of the electric and magnetic field vectors.

In general, Z, is complex, having both resistive and

reactive components.

To comply with the conditions required for the sup-

port of surface waves, the interface must be straight in

the direction of propagation of the wave but, trans-

versely, it can take a variety of shapes and forms. The

external medium is usually air, while the structure may

consist of dielectric, either alone or in combination with

a conductor, and metal surfaces provided with periodic

corrugations. For example, a wave which travels with-

out change of pattern over a flat surface bounding [6]

two homogeneous media of different conductivity and

permittivity was shown by Zenneck [291] to be a par-

ticular solution of Maxwell’s equations. Such a wave is

characterized [93 ] by the presence of a longitudinal

component of the electric field vector; it is a TM wave.

Surface waves can be propagated [44], [239], [257] in

plane or radial form over a dielectric-clad flat structure

and in axial form along a cylinder. Such waves can also

be supported by conical guides and, in particular, there

are surface waves of various forms in between the axial

and the radial variety. A typical flat surface is shown in

Fig. 9(a) in which medium (m) is a metallic conductor,

(d) is a dielectric slab, and (a) is air. For the dominant

TMO plane wave traveling in the z direction with

propagation coefficient y, the three components of field

required to satisfy the wave equation in the metal are

given by Barlow and Cullen [15] as

-.--rm%

‘L I
,= ---- ‘Lb- \

Ri-W’a

I i
\
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Fig. 9—Propagation over flat dielectric-clad surfaces. (a) Plane wave. (b) Radial wa~e. The properties of the media are (H) Metal,
pm =,w, e~q, am, (d) Dielectric, p~=,ao, e~c,, a~=O, and (a) Au-, pa=p,, ECC,,aa=O.
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H.m =

E.% =

E,. =

(21)

(22)

(23)
\Um + jtiemeo~

The factor efi”’–?’) is omitted for convenience and A is a

constant. The propagation coefficient along the y-axis,

t~~ = am + jb~, (24)

represents an attenuation am and phase change b~ for a

wave traveling inwards from the surface where y <0.

Within this medium

‘Y2+ ums = .@wl(un + jw%eo) . (25)

In the externaI air medium the fields for y z 1 are

similarly given by

llx. = .4 e–u.~, (26)

Ea. = – A (ai./jcoeo)e-U#, (27)

EUO= A (y/jcoeO) e–’’.~. (28)

Here

ua=aa — jba (29)

because the field not only decays at the rate aa with in-

creasing transverse distance but also suffers a progres-

sive phase change b. for a wave traveling towards the

surface. In this medium the propagation coefficients

satisfy

T2 + ua2 = — W2/G~. (30)

Within the solid dielectric there exists a standing

wave whose magnetic field is given by

H%d = Ad’ cosh ib,jy + A~” sinh %bdy (31)

and In this medium

72 + tfid2 = – QW2/C2. (32)

The conditions for matching the field components at the

boundaries between the different layers yields

‘aDh’’dz=-[::(:;);;J’33)
The impedance looking into the surface of the solid

dielectric is

Z, = R, + jX. = Ez./H.. = – u./ja~o. (34)

In the case of a good conductor, the surface impedance

has nearly equal real and imaginary parts and is given

by

Z~ = R~ + jX~ == (1 + j)(tipo/2u~)’12. (35)

The total surface resistance in the case of loss in the

dielectric is given by

R, = R~ + Ra = R. + (6wt/@Zw) tan 8. (36)

This resistance therefore depends upon the conductivity

of the metal if the dielectric is loss free. The surface

reactance X. is made up of one component arising from

the metal and another,

Xd = w.hl(cd – 1)/6d, (37)

for which the layer of solid dielectric is responsible.

These two components are of the same order of magni-

tude when the thickness of the dielectric i!> about equal

to the skin depth a. of the metal.

If 1 is assumed to be small so that tanh udl~udl and

zldl<<l, (33) gives

U. = aa — jba = j@.Z,/Zw. (38)

In general, the higher= the surface reacti~nce and the

higher the frequency, the greater the decay factor aa so

that the field becomes concentrated more closely in the

immediate vicinity of the surface. Any increase of R,

increases the inclination of the wavefront at the surface,

measured from the normal and this, in turn, increases

the phase velocity along the interface. On the other

hand, it may be anticipated by analogy with electric

circuits that the corresponding phase velocity would be

reduced by an inductive surface reactance and in-

creased by a capacitive one.

In order to obtain the attenuation and phase-change

coefficients along the surface in the direction of propa-

gation, (29) and (30) are substituted in the expression

for T to give [137]

““++(%3 ’40)
lf ~s~~, the velocity of propagation becomes

Eq. (39) shows that a is proportional to h!, and X, while

(41) shows that VP> c if R, is substantially greater than

X,, and vice versa. Values of loss and phase velocity

have been calculated [12 ] for frequencies of 0.3–30 kmc

for a dielectric with @=4, tan 8 = 0.001, and thicknesses

of 0.1–10 mm. At 10 kmc a layer 0.5 mm thick gave a

loss of 10-3 dbjm and a phase velocity of 0.65 c.

Radial FVaves Over Flat Sk-faces

The geometry and field pattern of a wave propagating

radially over a flat dielectric-clad metal surface are

shown in Fig. 9(b). The field components in the metal,

omitting the time factor e~ut, are [15]

H*m = i4&*~H,(2) ( – j~r) , (42)
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‘m=A(um;@em6)’”mvHo(2’’-~y”’44)
with (24) and (25) as previously. In the external air

medium,

H$a = A e-U#211@j( – jyr), (45)

E,. = A (u./jcoeo) e-U.~Hlt2J ( – j~~), (46)

Eva = A (~/c,)e-W.vHof2J ( – j~Y) (47)

with (29) and (30) as previously.

By comparing (21)-(23) and (42)-(44) or (26)-(28)

and (45)–(47), it will be seen that the radial form of the

modified Zenneck wave has the same field distribution

in the y direction as the corresponding plane wave.

Along the radial coordinate r, the wave propagates ac-

cording to the Hankel function and, at large distances,

the amplitude follows an exponential of the form

e-r”/r3.
There is again a standing wave in the intervening

medium and the surface impedance looking into the

dielectric-clad metal is given by

Z, = R, + jX, = – E,a/Hda. (48)

The values of R,, X, as well as the attenuation and

phase-change coefficients, are the same as for the plane

wave.

Axial Cylindrical Waves

It was theoretical y shown by Sommerfeld [244 ] that a

straight cylindrical conductor of finite conductivity and

having a smooth surface can act as a guide for electro-

magnetic waves. This surface wave propagation was

shown to take place for infinite conductivity by Harms

[109] provided that the surface of the metal is coated

with a dielectric layer. Although higher-order modes are

associated [13 j, [116] with this guide, attention is

MEDIUM @

?

E

\ /
r

t

usually focused on the dominant TMOO mode. The

geometry and field distribution of this wave are shown

in Fig. 10; when the radius of the cylinder is increased to

infinity, this axial wave becomes identical with the plane

wave over a flat surface. Following the work of Goubau

[94] the dielectric-coated wire has been extensively ex-

amined [22], [42], [54], [55], [58], [72], [89], [131],

[133], [134], [136], [157], [210], [224] as a transmis-

sion line for microwave frequencies.

For propagation along the z-axis, the field components

inside the metal, omitting the term e@~-w), are given

by [15]

Ez~ = AJO(jzt~r) , (50)

E,m = A (y/j?&) ~l(j’&#’) , (51)

with (24) and (25) for the flat surface. In the external air

medium,

with (29) and (30) as for the flat surface. The argument

of the Hankel functions is imaginary and thus the ex-

ternal fields decay at a rate which becomes exponential

for large radii.

The surface impedance looking into the dielectric

sheath, with r = rl, is

‘$=RS+’X$=%=(:)[XHI‘“)
which, when rls m, becomes j(uJaco), the value for the

flat surface given in (34). For cylinders of small diame-

ter, the curvature of the equiphase surfaces near the

wire has an important effect on the wave impedance

which may change from being inductive at a great dis-

(a)

I

H ,/ t

(b)

Fig. 10—Axial propagation on-a dielectric-clad cylinder. The properties of the media are (m) Metal, pm= .uo, emq um,

(d) Dlelectrlc, W=W, w,, m,= O,and (a) Air, p. =&,, ,a~= a, a. =0.
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tance from the wire to being capacitive near the wire.

In fact: a bare copper wire which has a very small induc-

tive component of impedance at its surface is a practical

guide for the Sommerfeld surface wave at microwave

frequencies.

Experiments on dielectric-coated wires have been re-

ported at microwave frequencies [92], [95], [98], [21 I ]

including 3 kmc [99], 10 kmc [45], [145] and at ultra-

high frequencies [198 ], [231]. The properties of the lines

are found to agree closely with those predicted by theory.

As an example [97], Fig. 11(a) shows the radius Y2 at

which the field is 90 per cent of its maximum, the reduc-

tion &JP/Vp of phase velocity and the fraction ~~/ ~ of

the energy propagated in the dielectric layer, all as

functions of the thickness of the layer. The wire radius

was assumed to be 0.1 cm and the frequency was 3 kmc.

The attenuation for wires coated with enamel, e= 3,

tan 5== 0.008 is given in Fig. 11(b). A conductor for 3.5

kmc need only be 0.056-inch diameter with a thin coat-

ing of enamel.
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MISCELLANEOUS SURFACE CIRCUITS

Transverse Corrugations

‘I’he surface reactance of a guide maybe enhanced by

coating it with an artificial dielectric such as a corru-

gated structure [27 ], [76], [121]. The flat surface shown
in Fig. 12(a) was first examined by Cutler [64] who con-

sidered the corrugations as short-circuited parallel-plate

stubs with an impedance given by (5). Assuming that

the surface has infinite conductivity and omitting the

factor e~@-@l, the field components in the air medium

outside the grooves are given by

H.. = jA (PJu.Z.) e–u.v, (56)

E,. = A e–u.~, (57)

E.. = – jA (P/u.) e–u.v, (58)

and (3o) becomes

p – U.2 = but = &P/G2. (59)

10rm=5’’--)‘I r 71

t+,= W?4
2 I I I / )/

I l\ Y A
-.-A

0,1 I I -.l__l
0.3 05 [ 23 5 [0 20 30

kmc

(b)

Fig. 1l—Properties of a dielectric coated wire. (a) 90 per cent field radius, change in phase velocity and propagation of energy
stored in the dielectric. (b) Attenuation for two sizesof enamelled wire.
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GROOVE “1? STUB

(a) (b)

Fig. 12—Propagation along corrugated surfaces. (a) Plane with parallel grooves. (b) Cylindrical with radial grooves.
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The wave is a TM type since the magnetic field lies

totally within the transverse plane.

Since the structure is periodic, the wave traveling

along the surface consists of a fundamental plus space

harmonics whose relative amplitudes are functions of

stub width, length, and pitch. The surface impedance of

the surface between the corrugations is zero, since E..

vanishes there. If the width of the stub is small com-

pared with the guide wavelength, the surface impedance

can be given its average value,

z, = – jZw(b/p) tan (27rl/A). (60)

Matching this to the uniform surface impedance given

by Ea./H.. gives

u. = &(b/p) tan (2rl/h). (61)

This relation shows that propagation is possible in cer-

tain bands where u. is positive, whereas, for other regions,

U. is negative and waves cannot be propagated. In the

first pass band as 1 increases from O to $A, the surface

impedance is inductive and increases from zero to

infinity. Moreover, the phase velocity varies from c to

zero while the field intensity as a function of distance

from the surface changes from a small to a large expo-

nential decrease, Such results have been confirmed [213 ]

by experiments on flat corrugated surfaces.

In the case of the corrugated cylinder in Fig. 12(b) the

surface-wave field has components given by

E,. = AH,(l) (j&?’), (62)

E,. = A (@/u.) H,cl) (jU,#) , (63)

Hda = A (&J24GzJH,(l) (j&?’) , (64)

with (59) as previously. If the dimensions are such that

the field is caused by the principal wave only, the guide

behaves as if it had a uniformly distributed surface im-

pedance given by

uazw 270(1)(htaf’)
z.=g=—

/3w H,(’) (jzia?’) “
(65)

The TEM wave impedance presented by the individ-

ual stub elements is given by [140]

FO((M’2)JO((M’1) – JO(LJ’2) ~ow’1)
z, = – jzw . (66)

17rJ(pw?’2)Jl(fLf’1) – -70(LZJ’2)~1(1%)

Here, again, a first-order approximation for the surface

impedance includes a factor (b/p), but a more accurate

empirical result,

Z. = (b/p)Zl (1 – ; e+’ – ; O-’’/’), (67)

is applicable for all values of surface parameters pro-

vided that p <*L The theoretical relations for the

surface reactance have been supported by experiments

of Barlow and Karbowiak [17] at 2.35 kmc and 9.4

kmc using resonant lines about 4 feet in length. The

reactance as a function of stub width is shown in Fig.

13(a) while Fig. 13(b) shows the effect of varying either

the length or pitch of the stubs.

E~ect of Curvature

If the surface-wave structure is curved in the direc-

tion of propagation, radiation takes place. This phe-

nomenon can be qualitatively examined [15], [20] by

considering the adjacent equiphase planes between

which the field is normally evanescent. On bending the

structure, the planes diverge so that the spacing even-

tually becomes sufficient for them when considered as

waveguides to allow propagation and hence radiation of

energy. It may be visualized that increase of curvature

would increase the radiation while enhancement of

the surface reactance would, by confining the field

more closely, reduce the radiation. This conception has

been employed [19 ] to calculate the power radiated

from a curved surface.

These azimuthal surface waves may be analyzed by

finding [77], [117 ], [178] a solution of Maxwell’s equa-

tions which represents their propagation. For a dielec-

tric sheet, as in the inset of Fig. 14(a), bounded on the

inside by a perfect conductor, the fields at a point r, O,

z may be constructed from cylindrical wave functions.

Assuming that there is TM mode propagation and a di-

electric constant of 4.0, the dotted lines in Fig. 14(a)

give the dielectric thickness for various radii of bending.

It will be observed that as the cylinder radius is de-

creased, a thicker dielectric film is required to maintain

the same degree of trapping of the wave. However, for

radii greater than a few wavelengths, the required film

thickness is a slowly changing function of radius which

smoothly approaches the plane value. An analysis for

TE waves yields the full lines of Fig. 14(a) and, here

again, many of the same considerations apply. A corru-

gated surface is shown in Fig. 14(b) where 6P, & are the

angular stub pitch and width, respectively. The curves

plotted again show that for radii of curvature exceeding

several wavelengths, the value of X/AQ is almost inde-

pendent of radius but depends chiefly on the corruga-

tion geometry.

Launching and Other Devices

The important practical aspect of the efficient

launching of surface waves may be ensured [162] by

matching their field pattern with that of the launching

device as closely as possible. The exponential decay

of the fields above a plane surface does not approximate
closely to the constant or sinusoidal distribution inside

waveguides and parallel plate lines and the launching of

a pure surface wave presents some difficulty. In an un-

published work, G. G. Macfarlane calculated that the

range of the surface wave from a finite aperture h is re-

stricted to a distance h csc 00 where 00 is the Brewster

angle of the material. For a lossless dielectric coated

surface, 00 is purely imaginary and the range is then in-

finite. Not all the energy goes into the surface wave be-

cause the finite aperture leads [15 ], [61] to an outward
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bjp

(a) (b)

Fig. 13—Properties of a corrugated cylindrical surface. (a) Surface reactance vs groove width.
(b) Surface reactance vs groove depth and number per wavelength.
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Fig. 14—Azimuthal waves on curved guiding surfaces. (a) Dielectric-clad metal, with TM (dotted line) ancl TE (fu 11line) modes.
(b) Corrugated surface, TM modes. The parameter marked on each curve is ?&

traveling radiation wave which represents a loss of

energy. The launching efficiency [143 ] is defined as the

power in the desired mode divided by that supplied to

the launcher.
The optimum conditions for launching surface waves

over a flat structure have been extensively studied

[87], [96], [168], [273]. In a typical theoretical and
experimental investigation, Rich [208 ] employed the

arrangement shown in Fig. 15 in which a 6-foot X l-foot

brass sheet is coated with +-inch polystyrene. The fre-
quency was 9.5 kmc and the vertical aperture of the

flare could be restricted to various heights by a nonre-

flecting absorbing sheet. The efficiency of the launcher

can be determined by first matching it to the surface

when terminated by a resistive load. The latter is then

replaced by a short circuit and the VSWR. measured

again; the launching efficiency is then equal to the volt-

age reflection coefficient. With aperture height of 1, 2,

and 3 cm the efficiencies measured were respectively 30

per cent, 60 per cent, and 85 per cent, while from 5 cm,

the efficiency flattened out to approach nearly 100 per

cent asymptotically. Such results agree very closely with

the theoretical values. A. practical launcher [213] for a

wave along a corrugated surface is shown in Fig. 16(a) ;

two such devices, one for the input and the other for the

output, give a power transmission ratio of 0.7.

The launching of a radial surface wave over a flat

structure has also been the subject of investigation [2S ],

[29]. In one series of experiments [81] the surface took

the form of a large aluminium disk, S-foot, 6-irLch di-

ameter and ~-inch thick; it was electrically loaded to

enhance its reactance by either a dielectric sheet or

circumferential grooves. Radial slots were provided in

the surface to enable probe measurements of field
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Fig. 15—Launching of waves over a dielectric surface. Frequency, 9 kmc; width of surface,
12 inches; dielectric-polystyrene, e= 2..5.
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Fig. 16—Launching of waves over a corrugated surface. (a) Plane surface, frequency 5 kmc.
(b) Cylindrical surface, frequency 3 kmc.

strength to be made. The launching was via a vertical

dipole whose height above the surface was adjustable.

At a frequency of 9,5 kmc, the launching efficiencies

were as high as 80 per cent for a particular height of the

dipole. Slot excitation has been shown [62 ] to be con-

venient, and efficient and the use of a circumferential

slot in a conducting cylinder leads to symmetry of

launching. In one arrangement [33] for 9.5 kmc, the

slot is at the circumference of a radial line fed by a co-

axial line within the cylinder.

Launching on a cylindrical-surface structure is fa-

cilitated because the Hankel function distribution of

the radial field intensity approximates to the inverse

radius law obeyed by fields inside a coaxial line. The

wave is therefore usually [18], [74] launched by flaring

the outer conductor of a coaxial line into a cone and

continuing the inner conductor to form the transmis-

sion line. An alternative is to employ a tapered tube of

solid dielectric slipped over the guide but, in either case,

the surface wave tends to be contaminated by radiation

from the launching device. As an example [213], Fig.

16(b) shows a corrugated cylinder fed from a rigid co-

axial line; a typical value of launching efficiency is 90

per cent.

Practical data have been given [262 ] on surface-wave

circuits and many instruments and components have

been constructed. Simple corners can be made by em-

ploying [41 ] a large reflecting sheet situated at the in-

tersection of the axes of the mating guides. Similar re-

flectors have been used to form surface-wave resonators.

In one example [14], [16] for 9 kmc the short-circuited

ends took the form of flat metal plates about 4-foot

diameter and mounted at right angles to the guide. The

energy was fed into the resonator by a small annular

opening adjoining the guide at one end as shown in Fig.
17(a) ; the observed surface wave was very pure and

thus measurement techniques are facilitated. It may be

shown from (40) that

and, since the length of the circuit at resonance is an

integral number of half-wavelengths, the velocity of

propagation can be determined. The radial variation of

the tangential magnetic field can be measured by a loop

probe in the far end-plate of the resonator.

Neighboring surface-wave lines can interact [173 ],

[174] and thus impedances can be measured by re-
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Fig. 17-Measuring apparatus forwaves oncyfindricaI surfaces. Surface-wave resonator with loop detail.
(b) Standing-wave meter forsurface waves.(c) Matched termination, VSWR=l.02.

flectom eter techniques [226]. The loss of a surface-wave The wave impedance in the z direction is given for TE

structure can also be measured [219] while the reflec- waves by

tion-coeficient of a discontinuity can be determined by
ZTE = EJH. = ZWe–112/sin O,

the Deschamps lmethod [230]. Greater versatility is
(70)

achieved by a standing-wave meter constructed in the and for TM waves by

surface-wave line itself and a typical example [16] is
Z~~ = E./Hw = Zwe-112 sin 6’. (71)

shown in Fig. 17(b). The surface waveguide consists of a

metal tube through whose wall the probe projects

slightly into the surrounding field. The energy ex-

tracted by the probe is taken to the detector via a co-

axial line formed by an insulated wire drawn through

the tubular guide. The probe projection is fixed and the

whole guide with the probe is moveable while the field

pattern remains stationary. A suitable matched ter-

mination is shown in Fig. 17(c).

WAVES ON DIELECTRIC LINES

Plane Slabs

The waves considered so far have been TM modes

propagating along a surface. In the case of a thick di-

electric slab, higher modes may propagate and, depend-

ing upon the cross-sectional area of the guide, the

proportion of energy flowing in the dielectric or in the

external medium can be controlled. One such practical

structure, the H-guide [255 ], consists of a dielectric slab

between two parallel conducting strips. Provided that

the dielectric has low loss, the attenuation of such a

guide is not only less than that of the corresponding

rectangular guide but decreases as the frequency in-

creases.

Propagation of energy inside dielectric sheets [263]

may be examined [220], [248], [288] by the use of

Maxwell’s equations, but an analysis depending on the

breaking up of the wave into two criss-crossing com-

ponents leads directly to the cutoff frequencies. Guid-

ance takes place provided that these components are

totally reflected at the dielectric/air interface. From

Fig. 18(a), this means that the angle of incidence must

be greater than the critical angle sin–]@12; that is,

AfAg = dlz sin 6. (69)

The reflection coefficient for the transverse field com-

ponent which is parallel to the interface is

for the E. component of TE waves and

for the HV component of TM waves. The imaginary

terms in (72) and (73) represent an exponential decay

of the fields outside the dielectric. The propagation co-

efficient in the x direction is real and given by

y = – (27r/X)(.s sin2 O – 1)’12. (74)

The reflection coefficients always have a magnitude

of unity and thus transverse standing waves are set up

in the dielectric which are cosinusoidal for odd-num-

bered modes and sinusoidal for even-numbered modes.

The electrical length @ of the standing wave from the

midplane to the boundary for both TEo~ and TM on

modes is given by

‘$ = COS-ll (1 + P)/2 I + (~ – 1)7/2. (75)

If ~, is the transverse wavelength, Fig. 18(a) gives

A/Az = N2 Cos e (76)

and, therefore,

Combination of (76) and (77) gives
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Fig. 18—Propagating modes in dielectric sheets. (a) Guide wavelength for TEon modes. (b) Geometry of
the system. (c) Guide wavelength for TMo~ modes.

At cutoff, ~= O and cos (1= [(e – 1)/e]w so that

A. _ ~ (e– 1)’/’

z– n—l
(79)

Thus, for a given value of ~/h~, O may be found from

(69) and @ from (75) to give h/21 from (78). Values of

A/21 vs h/?I, are plotted for polystyrene material with

e = 2.56 in Figs. 18(b) and 18(c) for various TE and TM

waves.

Cylindrical Rods

The theory of the nonradiative modes propagated

along a dielectric rod was give by IHondros and Debye

[115 ] and confirmed experimentally by Zahn [290] and

Schriever [225]. Their study has a long history [53],

[153], [209], [217], [218], [234] and is still the subject

of extensive investigation [1], [127], [128], [249],

[286]. A typical analysis [40], [78] assumes that there

is a cylindrical coordinate system r, 0, z having its z-axis

along the rod of radius Y1.The longitudinal components

of the field vectors, omitting the factor e@ ~--YzJ are, in-

side the rod with r < rl,

E.~ = A cos nOJ.(u~r), (80)

H.~ = B sin n$J.(u~r), (81)

where

Outside the rod, with r> Yl,

E,. = C cos n9H.tlJ(juar), (83)

Hz. = D sin n8Hmf1j(ju.r), (84)

with (30) as previously. Similar relations hold for the

other field components. Eqs. (30) and (82) give

[(%? + wa’)/(e – 1)]1/’ = @/c. (85)

A further relation between ud and u. is obtained from

the boundary conditions and thus enables these quanti-

ties to be obtained for given values of u, n, and e.

For n = O, the fields as shown in Fig. 19(a) are rota-

tionally symmetrical and there are two solutions. One

corresponds to a TM mode in which the magnetic lines

of force are circles centered on the rod axis. The electric

lines of force lie in the meridional planes through the

rod axis; they go to infinity and asymptotically ap-

proach planes perpendiuclar to the rod that are spaced

*A. apart. The other solution corresponds to a TE

mode in which the roles of the magnetic and electric

field vectors are interchanged. If n =1, there is an un-

symmetrical or “dipole” wave which may be roughly de-

scribed as a sinuosidal dielectric polarization perpen-

dicular to the rod and traveling along it. There is no

cutoff frequency for this wave, which thus exists for

thin rods or low frequencies.

The guide wavelength is given as a function of rod

radius in Fig. 19(b) for the n = O and n = 1 modes, the

free-space wavelength being 1.25 cm and c = 2.56 for

polystyrene. The attenuation coefficient is given in dec-

ibels per meter by

ad = 2729e(F/h) tan ~, (86)

where F is a dimensionless quantity plotted in Fig.

19(c). For large radii of the rod, F tends to its plane-

wave value of e–~= 0.625 while for thin rods, it be-

comes smaller because a greater fraction of the energy

resides in the external medium. Nonradiative modes

similar to those discussed can also exist on dielectric

tubes [264].

The n = O, TM mode on a dielectric rod can be

launched [123 ] from the end of a TEM mode coaxial

line or a TM mode circular waveguide [7]. The n = O,

TE mode can be excited from a similar plate containing
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Fig. 19—Propagation along dielectric cylinders. (a) Field configurations of various modes.
(b) Guide wavelength vs radius. (c) Attenuation vs radirrs.

slots which are suitably orientated and excited. The

field configurations of the n= 1, dipole, or HEI1 mode

are roughly similar to those of the TE1l mode in cir-

cular waveguide, and, thus, a suitable transition is one in

which the dielectric rod, tapering from a point to mini-

mize reflection, is inserted in the guide to fill the open

end. The portion of the rod external to the guide may

be further tapered to any size required. An experi-

mental investigation [41 ] of this mode at 24 kmc showed

that the guiding effect was retained even when the rod

was only a fraction of a wavelength in diameter. With

polystyrene material, the attenuation coefficient could

be as small as 0.004 db/m, the values showing good agree-

ment with (86). A length of the dielectric rod made

resonant by supporting it between two plane mirrors

36-inches square, gave a maximum Q factor of 53,000.

The propagation in the dielectric is, of course, altered by

shielding [259 ] the rod by a metal tube.

In the case of TM modes supported by a 10SSYdielec-

tric, it may be shown [18] that when the radius of the

rod exceeds a certain value, the surface impedance is

inductive and when it is less, the surface impedance is

capacitive. For a perspex rod, e = 2.61, radius 0,978 cm,

the phase velocity at frequencies below 9.2 kmc was

greater than the velocity of light.

Multiple Media

Surface waves may be propagated under more com-

plicated conditions than those considered so far. In par-

ticular, the properties have been analysed of a cylin-
drical conductor embedded in two [122] or three [43]

layers of coaxial dielectric. An analysis of surface wave

propagation along several layers of different media has

been given by Karbowiak [137] who showed that the

surface impedance is then given by the sum of the sur-

face impedances of the individual layers taken by

themselves each over a perfectly conducting sheet.

Furthermore, the impedance will remain the same even

if one layer of the composite medium is split up into a

number of thinner layers and intermixed with the

others; it is the total thickness of any clne medium that

is important.

The analysis becomes difficult when the conductor is

coated with a slab of magnetized ferrite. For thin slabs,

the TM mode is dominant and if the applied steady

field is perpendicular to the surface, it may be shown

[195 ] that the phase velocity can be controlled by varia-

tion of its magnitude.

Provided that the dielectric coating on the conductor

is thick enough, the ‘higher order modes found in the

case of the plain slab can propagate. The electric and

magnetic fields have one or more half-sinusoidal varia-

tions in the dielectric but decay exponentially in the

external air medium. The TM modes were given in an

unpublished work by R. B. R. Shersby-Harvie by P.,

the (n+ 1) th solution of

[
tan 2@.(~d — 1)112

-3 = +i7-’r’ ‘8”
The cutoff wavelength for the nth moc[e is given by

h. == 21(ed – 1)~/2/n (88)

and the corresponding guide wavelength is given by

~2

()

= 1 + (cd – 1)(1 – p.q. (89)
x

Propagation is possible at all frequencies when n = O;

this is the TMo mode previously considered for thin

layers.

For TE modes, pn is a solution of

[
cot hpn(cd — 1)’’2+-1 =-(;>--’)1’2’90)
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Fig. 20—Arbitrary-polarization surface-wave structures. (a) Double-dielectric slab. (b) Contours of equal phase velocity
for TM and TE modes. (c) Smgle-dielectric slab with septa.

This has no real solutions if 1 is sufficiently small so that

the lowest mode in this case has a cutoff wavelength.

For the nth mode

xc = 41(ed – 1)1/’/(1 + 27J) (91)

and the corresponding guide wavelength is given by

(+J=‘+($P+2n’2’1-~n’2<“2)
For some applications of surface-wave structures it is

desirable to support a wave of arbitrary polarization;

this means the combination of two principal polariza-

tion components with arbitrary amplitudes and phase.

Propagation of such a wave over a surface-wave system

requires that both TM and TE waves be supported and

also possess the same propagation coefficient, The gen-

eral equations for an n-layered slab have been given

[75] and it has been shown [205] that the requirements

for arbitrary polarization can be met by the double-

layer earthed dielectric slab shown in Fig. 20(a). Typical

contours of equal phase velocity for TM and TE waves

on the slab-thickness plane are given [205] in Fig.
20(b) ; the lower slab is air filled, the parameters are l/AQ,

and Q. is the dielectric constant of the upper slab.
A corrugated surface is unable to support a TE mode

and thus an alternative medium for arbitrary polariza-

tion involves [108 ] the use of a “mode filter” consisting

of septa embedded within a single dielectric slab whose

initial thickness 1 and dielectric constant are adjusted

for a given “trapping” of the TE mode. The septa shown

in Fig. 20(c) are spaced considerably less than +X in the

dielectric medium so that a wave with the electric field

polarized parallel to them is reflected. The height

(11–Q of the septa is chosen so that the TM mode

is “trapped” to the degree desired. For example,

with a slab of dielectric constant 2.5, an inverse ve-

locity ratio (h/Xg) of 1.2 is obtained with a slab thick-

ness 27r(lI – 12)/A= 1.0 for the TM mode and 27rlJA = 2.1

for the TE mode. Such equal velocity surfaces are, of

course, able to support circularly-polarized waves.

Image Lines

Surface-wave systems have found their main applica-

tion in the antenna field [107] but the dielectric image

line of King [146] shown in Fig. 21 (a) has several ad-

vantages as a transmission line. This image line is essen-

tially a dielectric rod supporting, as in field configura-

tion (iii) of Fig. 19(a), the dipole mode in which a con-

ducting sheet is placed in the plane of symmetry and
normal to the electric field, Thus half the rod and the

space surrounding it are replaced by an image in the con-

ductor.

The polarization of such a line is uniquely deter-

mined while the phase-change coefficients are identical

to those of the complete rod. The extent of the RF fields

is determined by the ratio of rod radius to wavelength;

if for example, this is 0.142, then 80 per cent of the

power flows in a region of radius ten times that of the

rod. For i = 1.25 cm, a typical line in polystyrene would

have a radius of 2 mm, the total width of the image

plane being 10 cm.

The loss in the dielectric material is given by (86)

but is supplemented by losses caused by radiation and

the finite conductivity of the Image plane. In the ab-

sence of artificial boundaries to the field, the radial

component of the Poynting vector is purely imaginary
and the radiation is zero. Loss caused by radiation

does, however, occur in the presence of bends, obstacles

and a finite image surface. The attenuation coefficient

caused by conductor loss is given in decibels per meter

by

a. = 69.5 R. F1/hZa, (93)

where F’ is a factor which must be calculated [149] for
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Fig. 21—Dielectric image lines. (a) Monopole launching. (b) Ring launching. (c) Efficiency of slot excitaticm.
(d) Effect of varying the area of a rectangular rod. The frequency is 9.7 kmc.

the particular geometry. This 10SS is generally smaller

than that caused by the dielectric except when the

wave is only loosely bound to the line. For example, at

9.6 kmc the total attenuation coefficient in decibels

per meter is 4.0 and 0.2 for values of rJh of 0.4 and 0.15,

respectively.

There are several methods of efficiently launching

[73] a pure dipole mode on an image line. The rnono-

pole in Fig. 21(a). achieves an efficiency of 75 per cent

provided that l/h exceeds 0.15. It is necessary to posi-

tion a reflecting plate about *A behind the monopole.

As shown in Fig. 21(b), a ring excited from a rectangu-

lar waveguide achieves 75 per cent efficiency for rJh

between 0.1 and 0.2. The efficiency of resonant-slot ex-

citation as a function of distance from the image plane

is shown in Fig. 21(c).

The small dielectric cross sections used in the dipole

mode do not permit any transverse resonances within

the dielectric and the concentration of the field about

the rod depends upon the volume of dielectric in regions

of high electric field. The properties of the transmission

system should therefore be insensitive to the exact

shape of the dielectric cross section, but strongly de-

pendent upon the total cross-sectional area occupied by

the dielectric. Typical sections studied [147 ] at a fre-
quency of 24 kmc were a half round, radius 0.066 inch,

both in the normal and inverted positions, a 0.084-inch

square, and a rectangle, 0.280 inch xO.030 inch, with

either face in contact with the image plane. Such shapes,

as well as recessed and twin lines, all show much the
same dielectric loss and field confining effect. The rec-

tangular shape does, however, lend itself to easy fabrica-

tion and Fig. 21(d) gives data [223] at 9.7 kmc for a

particular sample.

Experiments [148 ] show that the system is insensi-

tive to minor twists and imperfections in the dielectric

rod while the surface finish of the image plane is not

important. Such properties make the image line suit-

able [289 ] for millimeter wavelengths. Simple bends

and corners can be made with moderate loss and low

reflection. Semiconductor diodes may be coupled to the

image line with an insulated metal pin tc) give a VSWR

better than 1.2. A variable attenuator results when a

thin resistive sheet is placed in a radial plane whose

angle with respect to the image plane can be adjusted.

Such devices as standing-wave meters and directional

couplers can also be made in image line.

COUPLED-RESONATOR STRUCTURES

Tape-Ladder Lines

Systems propagating slow electromagnetic waves are

used extensively in practice and, although continuous

dielectrics have a limited application, the majority em-
ploy periodic structures of various kinds [26], [106],

[130]. The velocity of propagation in sud structures

must depend upon the particular application and may,

for example, be c for linear electron accelerators [110],

0.1 c for electron-tube amplifiers [202] and 0.01 c for

solid-state low-noise amplifiers [68 ]. Although bidi-

mensional and tridimensional slow-wave structures have

been examined [30 ], [182], only linear types will be

considered in what follows.

The power P flowing along a slow-wave structure and

We are related by

P/w. = VQ. (94)

If the electric field in the structure is of importance,

then a practical parameter is the coupling impedance

Zo = I E [2/2@2P. (95)

If the modulus of the magnetic field is effective, the per-

formance is specified by the admittance

Y = \ H \’/2p’P, (96)
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Fig. 22—Propagation along tape ladder Jines. (a) Cross s:ction: of Ijnes. (~) Dispersion curves with l~dder detail. Structures are
(1) side wall, (u) wavegulde, (iii) double ridge, (w) single ridge, (v) double tee and (VI) single tee.

Another parameter, the shunt impedance, is defined as

Z8~ = I E ]2/2CYP (97)

and is related to the power dissipated per unit length

because of ohmic losses.

A large class of slow-wave structures consists [21] of

resonators of identical shape and size coupled together.

The two basic types of coupling are pure inductive and

pure capacitive, the magnitude of each component de-

termining how the o-(? diagram of the uncoupled reso-

nators is modified. For example, the ladder line consists,

as shown in the inset of Fig. 22(b), of a periodic array of

parallel straight conductors. Such a wire or tape struc-

ture can propagate a variety of TEM waves, each one

corresponding to a different mode of excitation of the

tapes; the simplest mode is that in which there is a

phase change ~$ from one tape to the next.

Vm (or lJ = V~_~ (or l~_Je-~~~. (loo)

The characteristic impedance of a single conductor in

the array may be defined by

Zo(pp + 27’z7r)= T“7JIm, (101)

where n is caused by the periodicity of the structure.

The method of determining ZO found by Fletcher

[85 ] is restricted to rectangular conductors and as-

sumes that the component E. of field is constant

throughout the region between the tapes. The fields at

the common boundaries of the other regions are then

matched. The voltage on the nth conductor can then be

obtained directly, and the current in the conductor can

be found by integrating the tangential component of

magnetic field around its periphery. With the ladder

equally spaced from either ground plane and with di-

mensions as in Fig. 22, this method gives

The dispersion curve and coupling impedance of the

ladder structure can be calculated by assuming that

the TEM-mode voltage on each wire is given by

V(x, y, Z, t) = ~(y, z) (A e–@tF +Be~ ~~’) e~”’, (98)

where

(99)

The voltage and current on successive conductors in a

given (y, z) plane are related by

Numerical values of the summation for practical geome-

tries have been given by Wailing [276]. If w/flsO, (102)

simplifies to

Leblond and Mourier [163] calculated ZO by using a

quasi-electrostatic field distribution in the (y, z) plane,

but this method requires a measured value of the capac-

itances between different parts of the structure. The
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analysis also assumes that the conductors are thick

enough in the direction normal to the plane of the ladder

to ensure that each wire is shielded from al 1 except its

neighbors; for rectangular conductors the result reduces

to (103).

Butcher [38 ] has exactly calculated the RF fields dis-

tributed around an array of thin tapes by a method

which takes into account all the mutual couplings.

This theory predicts in the practical case of equal tape

and gap widths with w = m that

(104)

which may be compared with (102). It was shown that

the coupling impedance and the group velocity have a

product which with certain provisos, is the same for a

wide range of geometries. This “field distribution

factor” of an array, using (94) and (95) is given by

(105)

In the case of space harmonics such that 1.57r <P < 2~,

the exact solution leads to much higher values for the

coupling impedance than those given by the approxi-

mate methods.

The results of these methods are applied to practical

structures by consideration of the geometry and bound-

ary conditions. In I?ig. 22(a) the tapes are short-cir-

cuited at either end by (i) two perpendicular conducting

side walls or (ii) the opposing narrow walls of a rec-

tangular waveguide. Whatever the value of 6, this array

can support TEM standing waves only at the frequency

for which k is twice the length of the tapes. The disper-

sion curves (i) and (ii) shown in Fig. 22(b) are thus

horizontal lines and since the group velocity is always

zero, the structure does not propagate. Both inductive

and capacitive coupling are present but the amounts

are just equal and cancel each other.

The tape-ladder line can be given a pass band with

finite bandwidth by upsetting [37] the equality. The

frequency corresponding to any value of 8 can be re-

duced by distorting the structure to the ridge shapes

(iii) and (iv) of Fig. 22(a) which, in effect, reduces the

cutoff frequency of the guides formed on either side of

the ladder, The dispersion curves therefore have the

forms labelled (iii) and (iv) in Fig. 22(b) and the struc-

ture now propagates energy. The frequency corre-

sponding to any value of@ can be increased by adopting

the tee-shaped structures (v) and (vi) of Fig. 22(a),

the corresponding dispersion curves being given in Fig.
22(b). The single tee curve behaves peculiarly because

the cutoff frequency of the TEo1 mode of the guide

formed below the ladder is higher than the zero mode

cutoff frequency set by the guide above the ladder and

the first resonant frequency of the tapes. In both tee

structures the fundamental is seen to have the phase

and group velocities in opposite directions; it is thus a

backward wave. The m-mode cutoff frequency of any

of these ladder lines can be raised by using shorter

tapes running between horizontal plates supported by

the side walls [186 ]. The ~-mode cutoff frequent y is

still approximately equal to the first resonant frequency

of the short-circuited tapes and is thus inversely propor-

tional to their length. This is a valuable technique for

broadening the pass band of these structures while,

moreover, energy can now be made to propagate down

the undistorted rectangular waveguide.

The above analysis can be applied to a structure con-

sisting of two parallel arrays. In this case, modes can

exist with symmetric or antisymmetric field distribu-

tions; the former is usually of practical interest, Such

multiple lines give [19 1] high coupling impedance, wide

pass band, and low dispersion. Ash [11 ] has shown that

propagation takes place along the ladder if the tapes are

inclined or distorted in some way. Since there is now no

need for ridge or tee sections, several ladder lines may

be stacked together. Tape-ladder lines have proved to

be a convenient means of achieving [68] group veloci-

ties of the order of 0.01 c.

If, in the ladder line of the inset of Fig. 22(b), PI is

short-circuited to PS and Qt is short-circuited to Ql,

while Pz, PA, Qlj and Qz are open-circuited and so on

down the array, the interdigital line [112], [164], [193],

[279] of Fig. 23(a) is obtained. The period of the whole

structure is 2P, but it is also unchanged when it is
moved along the z-axis through half a period and then

reflected in the x = O plane. It is possible, therefore, to

consider a mode for which the electric held at ( --X, y,

z+@) differs from that at (%, y, z) only by a constant

factor e-~~”.

Taking into account the boundary conditions, the

dispersion curve may be calculated as for the ladder

line. The results [38 ] for thin tapes, for various values

of b/@, are given in Fig. 23(b). The branch corresponds

to a backward space harmonic but the complete disper-

sion curve can be obtained by displacing it by integral

multiples of r/@ along the fhaxis and then reflecting all

these branches in the w-axis. The portions of the curve

in which VO tends to be greater than c lie in forbidden

regions such that the phase velocity of tone of the space

harmonics also exceeds c. The exact dispersion curve of

a completely open structure cannot pass through the

forbidden regions because, if it did, the structure would

radiate. For thick tapes, successive gaps are shielded

from one another and the structure resembles a folded

transmission line; the branches are given by

* co– 26 = 2mr/p (106)

as shown by the dashed line of Fig. 23(b). For very wide
gaps, the free-space wavelength has the value 4a as in

the dotted line.

The meander line of Fig, 23(c) is constructed b y short
circuiting PI and Pz, Qz and Qa, and Ps and P4, and so on

down the array. The structure has a period of 2P and is
able to propagate at frequencies down to zero, It may



’50 IRE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES January

(a)

(b)

Fig. 23—Interdigital and meander structures. (a) Interdigital tape line. (b) Dispersion curves
with parameter b/p. (c) Meander tape line.

be shown [38] by the use of Babinet’s principle that the

complete dispersion curve of a meander line with gap
width (~ — b) and tape width b k the same as that of an

interdigital line with gap width b and tape width (P – b).

For structures with thick tapes, the phase velocity of STUBS

the nth space harmonic is given by (a)

c
—-=l+:+; (zn -l)

// / / / //’/ /
(107)

— \
VPn

T \ T
and the group velocity is = — \\ A )///v/////

c
n?=l+ G,*” (108)

METAL lRIS~S

(b)

Resonant Cavities

Slow-wave structures [65 ], [66] may employ reso-

nant cavities coupled in various ways. If the amount of

loading is small, the analysis can be based on a perturba-

tion of a homogeneous transmission line. For exam~le.

(c)

Field [82 ] considered a coaxial line in which either ‘the (c)

inner or outer conductor is provided with radial grooves

[70], [242]. Such an inductively-loaded surface can
support a TM-type slow wave, the phase velocity being

governed by the depth of the stub. At 9 kmc the inner

conductor is typically 0.686-inch diameter with disk
thickness of 0.011 inch and spacing rather more. As with

all corrugated structures, the field decays in the trans-

verse direction and, in the example quoted, the field is

effective to about 0.04 inch from the disc edges.

The structure of Fig. 24(a) is essentially a rectangular

waveguide with one broad wall inductively loaded with

series stubs. The dispersion curve resembles that of Fig.

2 except that there is a lower cutoff frequency caused by

the unperturbed waveguide. A waveguide of square

section can transmit two orthogonal modes with differ-

ent velocities and, as such, is a broad-band means of

producing [236 ] circularly polarized waves. In practical

Fig. 24—Coupled-cavity slow-wave structures. (a) Stub resonators
in rectangular guide. (b) Capacitive-coupled circular resonators.
(c) Dielectric-disc loading of circular guide.

structures [135], [179], [265 ] for millimeter wave-

lengths the stubs have been milled in the ridge of a

ridged waveguide.

The disk-loaded circular guide [144 ], [201] of Fig.

24(b) has been extensively employed in applications

requiring VP= c. The theory [31], [51], [69], [101],

[102], [104], [105] of TM propagation is based on a
matching of the fields at the mouths of the resonators.

The dispersion [56], [245 ], [268], [269], [270] of this

structure is rather pronounced but can be reduced at

the expense of low coupling impedance by the use of

large apertures in the disks. Data has been given on at-

tenuation [57 ] and the theory has been confirmed by
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experiment [103 ]. An alternative treatment assumes

[165], [181], [233] that the circular waveguide is

periodically loaded with shunt susceptances while an

accurate estimation of the dispersion curve has been

based [212 ] on a Fourier series representation. In some

cases, lower attenuation is achieved by the use of di-

electric disks [277 ], [278] as an anisotropic artificial

medium.

Resonant-cavity slow-wave structures can be an-

alysed [21] by consideration of the method of coupling.

Pure inductive coupling is a scheme in which only H

lines link the cavities. An example consists of a TEoI

mode rectangular waveguicle with transverse partitions

spaced distance $ apart. The dispersion curve is a hori-

zontal frequency line corresponding to Ag = 2P which

joins the points at ~ = O when the cavities oscillate in

phase and at ~ = r when they are out of phase. Narrow

slots in the partitions cut centrally and parallel to the

short sides of the guide allow inductive coupling, and

consideration of the magnetic field distribution shows

that the r mode is not affected whereas the zero mode

is lowered until, as the slot widens, it reaches the cutoff

frequency of the plain rectangular waveguide. The

equivalent circuit of this structure is a transmission line

periodically loaded with shunt inductances and the

dispersion curve thus resembles that of Fig. 2.

Pure capacitive coupling exists in the disk-loaded

circular waveguide, since E lines penetrate the small

central aperture. In this case the zero mode is not dis-

turbed while the other end of the pass band rises as the

hole diameter increases to reach eventually the char-

acteristic of a plain circular guide. The equivalent circuit

of this structure is that of a line loaded with shunt ca-

pacitance and the dispersion curve resembles that of

Fig. 1.

Mixed coupling is characterized by the presence of

both E and H lines in the coupling mechanism. Again

considering the disk-loaded circular waveguide, a slot

cut in the periphery of the partitions will introduce in-

ducti ve coupling. Investigation of the field perturba-

tions caused by the central and peripheral apertures

shows that the zero mode remains constant while the

-r mode is raised in frequency for the capacitive coupling,

as previously observed, but lowered for the inductive

COUPIing. If the structure initially has a central aperture,

the addition of the inductive slot will decrease the ca-

pacitive pass band until, with equality of coupling, it

becomes zero. Further increase in size of the inductive

slot, which may be regarded as introducing positive

mutual coupling, lowers the m-mode frequency. The

fundamental component of the wave traveling through
the structure now has negative phase velocity [48 ] and

is thus a backward wave.

In disk-loaded circular guides employing an electron

beam, less stringent requirements are placed on the

central aperture if the coupling of the cavities is mainly

by inductive slots. Forward-wave operation now re-

with consequent reduced coupling impedance. A for-

ward-travelling fundamental may be set up by employ-

ing negative mutual coupling. Chodorow and Craig

[47] achieved this by using different shapes for alternate

cavities so that the magnetic field on opposite sides of

the partition is in the same direction at the m mode but

in the opposite direction for the zero mode. The clover-

leaf structure [47 ], [91] of Fig. 25(a) is an example of

such a design. The dispersion curve s hews that the

zero-mode frequency is depressed relative to the ~

mode. At (3P= &r, a typical coupling impedance is

about 130 ohms.

Negative mutual coupling can also be obtained [47]

with the structure of Fig. 25(b) in which adjacent cavi-

ties are coupled by reversed loops. An extension of this

principle is that with the addition of many loops around

the entire structure, the metallic wall cam then be

omitted. The dispersion curve of such an interlaced

structure, shown in Fig. 25(b), indicates that- the funda-

mental is again a forward wave. For reference, the cut-

off frequency of the TMo1 mode in the unloaded ,guide

is also given. The characteristics are modified [194]

when the loop circuits are themselves resonant.

The characteristics of periodically loaded waveguides

may be measured by a number of experimental methods

[9], [79 ], 159], [247]. The properties of a matched in-

put coupling [185 ] may be examined by terminating

the slow-wave structure with a nonreflecting load and

by making impedance measurements in the input trans-

mission line. In one method [124], all reactive values of

the impedance in the loaded guide were produced by

sliding a metal shorting plug into it at various distances.

The parameters of the coupling system were then de-

termined by the well-known nodal shift method.

The frequency characteristic of a periodic guide may

be determined from probe measurements when the far

end is short circuited. Care must be taken in the location

of the probe since it detects the total electric field of all

the space harmonics whereas generally a determination

of the wavelength of the fundamental space harmonic

is all that is required. Another method makes use of the

fact that the phase of the field inside the stub uniquely

determines the fundamental wavelength in the line.

Thus by measurement of the amplitudes of the fields

at the back of each stub and plotting on a graph, the

wavelength may be obtained. Greater accuracy was

obtained [135 ] in measurements at 50 kmc by using a

sliding base plate to carry the probe, the output of which

was fed into a bridge comparison circuit.

One satisfactory method is to short circuit the trans-

mission system at both ends and to search for the reso-

nant frequencies of this structure. It is necessary that

the short-circuiting plungers be at planes of symmetry

of the system so that all space harmonics have zeros in

the standing-wave pattern at the plungers. If this is not

done, reactance, caused by other modes being excited

at the ends of the structure, would resu [t in the resonant

quires, however, the use of the n = +1 space harmonic frequencies being dependent to some extent on the
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length of guide chosen. The condition for resonance is

that there must be an integral number of half-wave-

lengths in the length of the guide so that for a structure

of N resonators, ff is given by

The resonant frequencies of the author’s structure con-

sisting of N= 6 resonators are shown in Fig. 26; the

relevant dimensions are given in the inset. It is seen

that the modes form a group of N+ 1 frequencies in a

restricted pass band where the modes are clustered in

the neighbourhood of the two edges of the pass band

and more widely spaced between. The edges of the

pass band are the zero and T modes at which the phase

changes from one section to the next are BP= O and r,

respectively. The group velocity may be found from the

slope of the curve and therefore by using a measured

value of unloaded Q factor, the attenuation is calculated

from (8). A periodic waveguide may also be made reso-

nant by bending it around in a circle so that the input

connects to the output. In this case there must be an

integral number of whole wavelengths in the length of

guide and, once again, the continuous curves break up

into a series of discrete points or modes. In both these

types of resonators the separation of the resonances,

especially near the n- mode, can be increased by the use

of systematically-modified loading reactance.

The field distribution, coupling impedance, and shunt

impedance of a slow-wave structure are usually deter-

mined by perturbation techniques [3], [184]. As shown

(a)

Fig. 25—Slow-wave structures with r
with slot coupling. t
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Fig. 26—Resonant frequencies of a short-circuited slow-wave structure.



i 960 Harvey: Period;c and Guiding Sfrucfures at Microwave Frequencies 53

in the inset of Fig. 26, a perturbing object such as a

small dielectric or metal sphere is moved along a pre-

determ~.ned line as, for example, the direction of propa-

gation. Observations are made on the changes in reso-

nant wavelength for which Slater [233] gives the relation

dh .— — —
1

—
J(pow – @E’)dv’

Al’
(110)

JV

where A V, V are, respectively, the perturbed and cavity

volumes, The measurement is made absolute by deter-

mining the total stored energy by introducing [187] for,

exampie, a small variable plunger in a region where H

is zero and E constant. From knowledge of the phase

velocity and field distribution, the coupling impedance
may be calculated.

HELICAL STRUCTURES

Simple Helix

A widely-used slow-wave structure consists of a me-

tallic conductor wound in the form of a helix with cir-

cular cross section. The propagation of electromagnetic

waves on such helical structures was first studied by

Pocklington [206] who assumed that there was a thin

perfectly conducting wire. The solutions obtained pre-

dicted a traveling wave whose axial phase velocity is

nearly c for low frequencies but reduces to c sin ~h for

high frequencies. The latter result is equivalent to a

wave with phase velocity c traveling along the wire.

Under these circumstances it has been shown [138] that

the wave possesses axial components of both electric

and magnetic field and since it is evanescent over the

wave front on the outside of the helix it may be regarded

as an EH surface wave, i.e., a mixture of TM and TE

modes which contain roughly equal amounts of electric

and magnetic energy. A pure EH wave may only exist

as a traveling wave on a simple helix—two EH waves

traveling in opposite directions result in an elliptically

polarized EH surface wave whose plane of polarization

rotates with position along the line.

Some basic properties emerge from the model applied

by Ollendorf [188] and others [132], [150], [151], [2!02],

in which the helix is replaced by an anisotropic sheet

wound on a cylinder and conducting only in the ~h di-

rection. This sheath model ignores the periodic structure

of the actual helix as well as the finite size of the con-

ductor. Sensiper [228] shows that solutions only exist

for S1OW waves where fl > flu and which represent modes

characterized by different angular variations given by
e~mo.The usual m = O wave shows large dispersion at low
frequencies,but at higher frequencies, the phase and

group velocities are nearly equal over a broad band. For

modes where m >1 which occur when 2~rh ‘>h, the re-

sults are more complicated since there are now several

waves per mode number. When these are plotted c]n an

o —(3 diagram it is observed that some branches have

the phase and group velocities in opposite directions,

corresponding with backward waves. The sheath model

enables an estimate of the coupling irnpecl ante to be

made but experiment [63 ] shows that this is about twice

that possessed by practical structures.

The periodic nature of the helix is evident in analysis

based on the tape model in which the cc,nductor is con-

sidered to possess zero radial extent. The structures

examined have included narrow tapes or wires [,154],

[155], [156], [197], [214], [215], [240], those with

narrow gaps [266 ] and miscellaneous sections [49].

The developed tape helix [228 ] is shown in Fig. 27(a),

practical structures having nearly equa,l gap and con-

ductor widths. It is evident that

cot $hh= 2~?h/& (111)
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Fig. 27—Propagation along a tape helix. (a) Developed tape helix. (b) Phase velocity vs frequency,
(c) Frequency characterisitc. Helix details are $, = 10°, r~/P =0.1.
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The periodicity means that the wave function is charac-

terized by a phase-change coefficient given by (1).

Each angular mode of the helix now contains a complete

set of space harmonics and, because of the close con-

nection between translation and rotation in helical

structures, the conditions for propagation require m = n.

The exponential field relation then becomes

e–i” [(27r/p)z – 6’]. (112)

On applying the appropriate boundary conditions,

analytical and graphical procedures give the results

shown in Fig. 27(b) for the particular case of ~k = 10°

and ~b/p = 0.1. The condition ~. > (3leads to the existence

of forbidden regions which are associated [203] with

coupling to fast waves [169] leading to radiation from

the structure. No propagation takes place for the con-

dition

w > n-c/p or p < +x. (113)

The branches A to E correspond to different angular

modes. If the helix is excited by a source at z = O, then

for z> O those waves with positive group velocity,

indicated by full lines, can exist, whereas for z <0 those

waves with negative group velocity, indicated by dotted

lines, can occur.

For example, when w < 0.2irc/~, propagation is pos-

sible with values of 130indicated by the branches A Oand

COhaving positive phase velocities and BO’ having nega-

tive phase velocities. A few examples of the associated

space harmonics marked with the appropriate subscript

n, are also shown on the diagram; such harmonics have

been observed experimentally [5], [280 ], [281]. The

phase velocity [267 ] of the harmonics for various angular

modes is given by

Vpn i3wp/27r—. (114)
c n + flo$/2r

and values for various branches are given, as a function

of co, in Fig. 27(c). Eq, (114) shows, for example, that

the first forward space harmonic is equivalent, as re-

gards phase velocity, to the fundamental of a helix of

radius (27rr~ –i) /2m. Operation in such a harmonic al-

lows [158 ] the use of a larger helix than with the usual

fundamental mode.

Analysis of the power flow shows that a considerable

fraction is carried by the space harmonics which explains

the too-high coupling impedance given by the sheath-

helix model. Butcher [38 ] extended his work on ladder

lines to include calculation of the dispersion curves and

coupling impedance of tape helices. Other studies of the
helix have included power handling capacity [34] and

attenuation [118 ], [222], [261]; the latter results have

been extended [49 ] by the use of a correction factor

to conductor shapes other than the thin tape.

Pyactical Modifications

Considerations arising in practical use require modi-

fication [161 ] of the simple helix. The effect of a dielec-

tric has, for example, been examined [100 ] in the case

of a spiral support for a coaxial line but most work

[183], [189], [221], [240], [260] has been devoted to

determining the change in characteristics of the metal

helix in a continuous surround. In a comprehensive an-

alysis, Tien [252] showed that the phase velocity and

coupling impedance are reduced by a dielectric loading

factor. This factor is typically O.2–0.8 and can be raised

by supporting the helix by tubes or wedges so that the

main body of dielectric is away from the immediate

vicinity of the helical surface.

Analysis with the sheath model suggests [25 1 ] that

in certain circumstances small amounts of dielectric

can reduce the dispersion of the helix. Experimental

results of the attenuation of helices, both alone and in

several types of dielectric support, have been quoted

[196]. The frequency was in the range 2.6 to 3.6 kmc and

the examined helices possesed diameters of 0.1 to 0.25

inch and wire to helix length ratios of 13 to 23. The helix

attenuation was found to vary with the material, to in-

crease linearly with frequency, and to have a flat maxi-

mum at a ratio of wire-diameter pitch of ~. For a helix

of 40 turns per inch with diameters 0.15-inch outside,
0. 1~8.inch inside, the attenuation Coefficients at 3 kmc

for various materials and supports are given in Table I;

the wire diameter was 0.011 inch. These results confirm

that a fluted or similar support adds little to the helix

losses.

TABLE I

ATTEFWJATION OF SUPPORTED HELICES

Type of Dielectric
Plain Silver-Plated

Tungsten Wke Tungsten Wire
( I

decibels decibels

None
pe~ ~:h per inch

0.26
707 fluted glasstube 0:62 0.33
Quartz tube 0.75 0.4?
707 plain glasstube 0.88 0.49

More complicated media which have been studied

include attenuating layers [160], [284] and semicon-

ductors [243 ]. Ferrites are of practical interest since

the loss caused by this medium may be nonreciprocal in

direction. Propagation along a helix surrounded by a
ferrite sleeve has been analysed [250] in terms of a

plane sheath model with nonreciprocal properties oc-

curring under the condition of circumferential magneti-

zation.

The properties of a helix with a coaxial inner con-

ductor have been examined but the effect of an outer

metallic sheath is more pronounced [8], [207], [229],

[235 ], [283] since radiation from the helix is prevented.

Under conditions of evanescent radial decay of the

fields, the outer sheath has little effect unless it is very

close or the frequency is low. For modes in which VP> c

Stark [246 ] has shown that the fields have a radial de-

pendence which oscillates outwards to the conducting
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(a)

(b)

(c)
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Fig. 28—Contra-wound helixes. (a) Twin tape helix. (b) Modified structure. (c) Frequency characteristic
for helix wkh 2d/p = 1 and cot $k as parameter.

sheath in the manner noted in the case of capacitive

loading of Fig. 4. In these “exceptional” regions the con-

ditions resemble perturbed TE and TM modes of a

coaxial line and circular waveguide.

If several helices each with the same pitch and radius

are equally spaced in the axial direction, there results

the multifilar helix [126], [238]. The curves of Fig.

27(b) still apply, but if N is the number of conductors

the abscissa points ( – 27r/4), O, (+ 27rp) and the ordi-

nate point rc/~ are multiplied by N. According to the

value of IV, some of the space harmonic components

will be missing.

The bifilar helix with N= 2 has received much atten-

tion [86], [152 ], [175]. At low frequencies there is an

extra mode present which is analogous to the TEM

wave on a two-wire line. At any transverse plane the

equal RF currents on the two tapes may thus be in-

phase or out-of-phase. In the former case, odd space

harmonics are zero and in Fig. 27(b) the solution corre-

sponding to branch BO and the portion of branch Coalong

the forbidden boundary region disappear; the A o branch

and the remaining portion of CO then join through the

now-vanished forbidden region. In the out-of-phase

case, the even space harmonics are zero. In either condi-

tion, the power carried by some of the unwanted com-

ponents can be eliminated and a higher impedance for

the desired modes is realized. The bifilar helix has re-

ceived special study [280 ] regarding backward-wave per

performance; in the push-pull mode it has substantially

higher impedance [ 253] than the single helix.

As the pitch and diameter of a single helix are in-

creased, the impedance of the fundamental is reduced

[252], [253] while that of then= -1 space harmonic is

increased, Such an effect is undesirable in practice and
may be eliminated by the contra-wound helix [46]

which, as shown in Fig. 28(a), consists of two helices

wound in opposite directions. An alternative version

shown in Fig. 28(b) consists [25] of a spatial distortion

which has the advantage of simplicity of construction.
Single or multifilar helices are possible in both arrange-

ments. Two modes, designated as the symmetric and

antisymmetric, may be propagated and can be consid-

ered as arising from the combining of the single helix

modes with different phases. In the fcu-mer, the two

modes are superimposed in phase and, in the latter,

out of phase. In the symmetric mode, which is the one

considered, the axial electric fields of the fundamental

component add, and the resultant axial magnetic field,

together with its associated stored energy, is zero. Thus

the TE portion of the fundamental component is non-

existent so that the higher order space harmonics must

have most of their energy in the magnetic or TE part

of the field. This implies that the higher order space

harmonics have small axial electric field components

and, consequently, small impedance for backward

waves.

The exponential term in the field equations now takes

the form

exp~ —j[(2r/$)(n + 2n’)z — mfl] }, (115)

where

Pm,n’ = 80,0 + 27r(M + 27’’z’)/p (116)

and is similar, if n’ is omitted, to the single helix set of

space harmonics. In Fig. 28(c), w is plotted against 6 for

two examples of twin helices with 27rbI/@ == 1, and cot

~h = 5 and 10, respectively. The forbidden regions are

the same as for the single helix, and the solution for cot

~h = 5 has two branches, whereas that for cot+, = ’10 has
five, only three of which are shown. Measurements [25]

on contra-wound helices show typically that there is an

increase by a factor of 2 in the fundamental impedance

and a reduction by a factor of 20 in the n = — 1 space

harmonic, as compared with the single helix. As expected

from the diagrams, the phase velocities show increased

dispersion over the single helix.

Numerous practical designs of helices have been de-

veloped [71 ], [84] for use at microwave frequencies. A

typical example of 0.048-inch diameter copper wire,

diameter of turn O.25-inch and pitch 01.157-inch would

have an axial velocity of 0.1 c, attenuation, 2 decibels

per meter, and coupling impedance, 500 ohms. The ap-
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placations of helices require measurement [184] of their

essential properties and the design of broad-band transi-

tions from coaxial and waveguide transmission lines. In

experiments [282 ] on such devices, mercury formed a

convenient and efficient moveable short circuit. Transi-

tions from coaxial line [170], [287] may be via the inner

conductor, the outer being continued for a short distance

as a sheath surrounding the helix. The reflections caused

by changes in pitch angle [200] are also relevant.

Coupling of power into and out of a helix at any par-

ticular point can be achieved [59] with an additional

surrounding concentric helix. The coupling is strong

when the helices have very nearly equal velocities of

propagation when uncoupled and they are wound in

opposite senses. These transitions resemble directional

couplers, and modifications such as tapering or stepping

can be employed. Complete power transfer can be af-

fected over a distance of the order of one-helix wave-

length (about O.11). Coupled helices have no direct con-

nection and thus the input or output circuit may be ex-

ternal to the device containing the main helix. The

coupling conditions are modified in the presence of a di-

electric or electron beam [272] and triangular as well as

sernicircular-re-entrant coupling helices have been de-

veloped [1 O]. A typical [166] helix coupler for frequen-

cies of 1. 7–2.3 kmc possessed a diameter ratio of 2.7

with an input VSWR of 1.3 and a directivity of 4 db.

Such large diameter ratios lead to difficulty in matching

and thus a third helix, intermediately placed and un-

connected but contra-wound with respect to the other

two, has been proposed and tested [180].
A helical structure maybe made by spiraling [113] a

rectangular waveguide. Such an arrangement has been

analysed [274], [275] by considering a guide whose

axis is uniformly curved and adopting the fiction that

points at angular separation of 2T are not equivalent

but differ in axial position by the pitch. If the rectangu-

lar guide propagating its dominant mode is orientated

with its major dimension perpendicular to the axis of

the structure, a TMo1 mode is supported whereas the

orthogonal orientation supports a TEOI mode. Such a

structure is very dispersive [52] if coiled, for example,

with a radius ratio of 5:1. Improvement results when

there is coupling between turns as, for instance, in the

extreme case of a coaxial line with helical grooves in one

or both conductors. The properties now resemble those

of the stub-loaded line provided that account is taken

of circumferential as well as of axial propagation. A

further modification entails the removal of the center

conductor to form an open helical waveguide which has

a low frequency cutoff.
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Design of Mode Transducers*

L. SOLYMAR~ AND C. C. EAGLESFIELD~

Summary—The propagation of the electromagnetic wave in a
gradual transducer is dkcussed. It k shown that the incident mode
and the geometry of the transducer determine the outgoing mode.
Inverttig this theorem, a method k suggested for the design of the
transducer% surface for casesin w~lch the desired modes in the tmi-
form waveguides are given.

The application of the method is illustrated in three examples.

1. INTRODUCTION

I N the design of a microwave transmission system it

is often necessary to connect two uniform wave-

guides of different cross section by means of a non-

uniform waveguide (subsequently referred to as a trans-

ducer). The transducer can be used for two different

purposes: 1) to transform the same mode from one

waveguide into another waveguide of different size; and

2) to transform a certain mode of one waveguide into

a predetermined mode of the other waveguide,

The best example for the first type is a transducer

between two rectangular waveguides of different size.

The requirement is to transform efficiently the HO1

mode in a specified bandwidth. All the solutions natu-

rally employ a transducer whose cross section is every-

where rectangular. Similarly, the cross section of a

transducer between two circular waveguides of different

diameter is always circular. The problem in these cases

is how to vary the size of the cross section. This field is

well explored, and for certain cases optimum solutions

have been obtained.

The design of a transducer of the second type (gener-

ally called a mode transducer) is incc~mparably more

complicated, since the shape of the cross section is vary-

ing. Although mode transducers have been used since

the earliest days of microwave transmission, no syste-

matic procedure seems to have been developed for the

design of the required cross sections. The existing mode

transducers were designed by physical intuition.

The aim of the present paper is to suggest a syste-

matic design method. For the better understanding of

the basic phenomena, the properties c)f a given trans-

ducer are first analyzed. It is shown that the incident

mode and the surface of a sufficiently gradual trans-

ducer determine the outgoing mode. In the third section

the inverse problem is dealt with, ie., choosing the

surface of the transducer when the clesired modes in

the uniform waveguides are given.

II. THE PROPAGATION OF THE ELIXTROMA~NETIC

WAVE IN A SUFFICIENTLY GRADUAL, TRAN’sDucm?

Let us consider the following arrangement of wave-

guides (see Fig. 1). The uniform waveguide .4 extends

from z= – ~ to z= O, the transducer from z = O to .s= L

and the uniform waveguide B from z = L to z = GO.

* Manuscript received by the PGMTT, July 6, 1959; revised
manuscript received, August 17, 1959.

f Standard Telecommun. Labs. Ltd., Harlow, Essex, Eng.
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